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1 | INTRODUCTION

| John Raquet®’ |

Christine M. Schubert Kabban® |

Abstract

All-source navigation has become increasingly relevant over the past decade with
the development of viable alternative sensor technologies. However, as the num-
ber and type of sensors informing a system increases, so does the probability
of corrupting the system with sensor modeling errors, signal interference, and
undetected faults. Though the latter of these has been extensively researched, the
majority of existing approaches have constrained faults to biases and designed
algorithms centered around the assumption of simultaneously redundant, syn-
chronous sensors with valid measurement models, none of which are guaranteed
for all-source systems. As part of an overall all-source assured or resilient naviga-
tion objective, this research contributes a fault- and sensor-agnostic fault detec-
tion and exclusion method that can provide the user with performance guaran-
tees without constraining the statistical distribution of the fault. The proposed
method is compared against normalized solution separation approaches using
Monte-Carlo simulations in a 2D non-GPS navigation problem.

sor faults. Of these challenges, the latter has been exten-
sively researched (Bhatti, 2006; Bhatti, Ochieng, & Feng,

All-source navigation and Assured Position Navigation
and Timing (APNT) have become increasingly impor-
tant research areas over the past two decades, especially
as alternative navigation sensor technologies (e.g., vision
(Venable, 2016), radio (Curro & Raquet, 2016), magnetic
(Canciani & Raquet, 2016), etc.) have been matured and
integrated into navigation systems (Grejner-Brzezinska
etal., 2016). However, each additional sensor allowed into a
navigation system introduces another opportunity for cor-
rupting the navigation solution with errors in sensor mod-
eling, unexpected signal interference, or undetected sen-

2007a, 2007b; Brenner, 1996, 1990; Brumback & Srinath,
1987; Call, Ibis, McDonald, & Vanderwerf, 2006; Joerger,
Chan, & Pervan, 2014; Kerr, 1980; Lee et al., 1986; Parkin-
son & Axelrad, 1988; Sturza, 1988; van Graas & Farrell,
1993; Young & Mcgraw, 2003) as a multi-sensor fault detec-
tion problem where each satellite in the Global Position-
ing System (GPS) constellation is regarded as a differ-
ent (albeit identical in nature and synchronous) sensor
in the multi-sensor system, and the “fault” is defined as
an unmodeled bias that is assumed to only affect one of
the sensors (satellites) at any given time. As shown in
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Jurado, Raquet, and Schubert Kabban (2019, 2020), our
overall research motivation is to create a resilient sensor
management system that provides APNT through the
online detection and self-correction (i.e., auto-tuning) of
sensor models that do not match observed measurements.
In support of this overall effort, the specific developments
presented in this paper seek to determine when any of the
above sources of corruption are present by detecting any
general mismatches between a sensor’s stated model (i.e.,
measurement function, function parameters, and error
covariance matrix) and its observed measurements, where
an unmodeled bias is simply one specific case of a mis-
match. Additionally, our research shifts away from iden-
tical and synchronous sensors, such as GPS satellites, and
focuses on all-source multi-domain (e.g., position, velocity,
etc.) and asynchronous sensors. In the following section,
we discuss traditional techniques generally used in fault
detection and exclusion and highlight the novel develop-
ments and adaptations we have made in order to achieve
our research objectives.

2 | BACKGROUND

Multi-sensor Fault Detection and Exclusion (FDE)
research to date has generally approached the FDE
problem through the use of either least-squares (Sturza,
1988; van Graas & Farrell, 1993) or filtered (Joerger et
al., 2014; Young & Mcgraw, 2003) approaches. In gen-
eral, least-squares approaches rely on the availability of
redundant measurements and perform the FDE function
on a sample-by-sample basis. This approach is useful for
systems where simultaneously redundant measurements
are available by design, and the sensors in question
measure the similar quantities (e.g., the GPS constella-
tion). In contrast, filtered approaches rely on estimation
filters, such as the Kalman Filter (KF), Extended Kalman
Filter (EKF), and Unscented Kalman Filter (UKF), to
integrate measurements from various sensor types into a
consolidated state-space estimate that can then be tested
for faults using a variety of test statistics. In this case, the
fault exclusion function is often provided by employing
a series of subfilters, each excluding the measurements
from a subset of sensors in oder to guarantee the existence
of a fault-free solution. One of the most prolific filtered
approaches, referred to as Normalized Solution Separation
(Young & Mcgraw, 2003), is based on testing the statistical
distribution of the difference between the state-space
estimate obtained by a filter informed by all available
sensors and each of the various exclusion subfilters
previously described. Based on our all-source research
objective, filtered approaches appear most useful since, by
definition, we seek to integrate information from sensors

of various types (i.e., position, velocity, pseudorange, etc.).
However, as later shown, Normalized Solution Separation
methods were found ineffective for detecting sensor model
mismatches (i.e., faults) that do not result in significant
differences in state-space estimates between the main
filter and the subfilters. One example of such faults is an
incorrectly stated sensor measurement error covariance
matrix and is later shown in Section 4. Additionally, as
part of our research objective, we also seek to provide
users with a measure of system performance guarantee
beyond the filter-computed estimation error covariance
since filter-estimated error statistics are not guaranteed to
be consistent in the presence of undetected faults. While
the majority of FDE research has solved this problem
via the computation of system integrity figures such as
Horizontal Protection Level (HPL) and associated alert
limits, the lack of an assumed fault-present statistical
distribution prevents us from estimating quantities such
as a probability of missed detection, which are the basis
for the majority of integrity computations.

Given the developments required to enable our all-
source research objective, our proposed method, hence-
forth referred to as Sensor-Agnostic All-source Residual
Monitoring (SAARM), provides a significant contribution
to the state-of-the-art in that it: enables reliable fault-
agnostic and sensor-agnostic FDE across a larger vari-
ety of fault types when compared to Normalized Solution
Separation and provides a method of establishing system
performance guarantees without defining a fault-present
condition or distribution, or a probability of missed detec-
tion. In this work, we also demonstrate our FDE approach
using “all-source” sensors across various domains and
with different update rates, which directly addresses the
emerging all-source APNT challenge.

The remainder of this paper is divided into three
additional sections. Section 3 develops the necessary
multi-filter multi-sensor notation, the residual-based test
statistic, the fault detection and exclusion process, and
the system performance assumptions and guarantees.
In Section 4, the detection performance of the pro-
posed method is compared against a normalized solu-
tion separation method in a variety of simulated all-
source navigation problems. Finally, Section 5 summarizes
the research contributions and provides ideas for future
work.

3 | METHODOLOGY

3.1 | Multi-sensor multi-filter notation

This section expands the conventional Kalman filter
(Kalman, 1960) notation from Maybeck (1982, 1984)
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to include estimates from multiple filters as well as
measurements from multiple non-identical sensors. The
notation and underlying considerations will be crucial in
the later development of the residual-space test statistic
and the resulting fault exclusion process. Consider a
(possibly) nonlinear dynamic system of the form

x(1) = £[x(0), u(t), t] + G(OHw(?), ey

where x is the N X 1 navigation state vector containing the
system states, u is the control input vector, G isan N X W
linear operator, and w is a W x 1 white Gaussian noise
process with a W x W continuous process noise strength
matrix Q. Suppose the discretized (Van Loan, 1978) system
states are estimated by J separate filters. Then at time ¢ =
ti, the system state estimate vector and corresponding state
estimation error covariance matrix from filters j = 1, ... ,J
are given by %l/1(¢,) and Pg(tk), respectively. Next, each of
the J filters can be informed by any, all, or a subset of I sen-
sors. At time £, the i = 1,... ,I sensor provides (possibly)
multidimensional Z; X 1 measurements of the form

zll(5) = Wl [x(1), u(t), 1] + vl (), @)

where hll is a (possibly) nonlinear measurement func-
tion, and vlil(t) is a Z; x 1 discrete white Gaussian noise
process with covariance matrix RI!(¢; ). Immediately prior
to a measurement update the estimated measurement for
sensor i from filter j, 21%/1, is generated using

200717y = B [RUIED), uey), 1], &)

while its estimated covariance matrix, P (t ), is gener-
ated based on the type of filtering algorlthm For example,
in a linearized filter (such as an Extended Kalman Filter),
it can be computed using

pliJl

22

= Hmpg;HmT, (4)

where the time index (¢,) is omitted for simplicity, and
H{!l represents the Jacobian of hll about the point £1/1(1,).
For information on generating P;; in an UKEF, the reader
is referred to Wan and Van Der Merwe (2000). Finally, the
(so-called) pre-update residual vector computed between
sensor i and filter j, rltJl and associated covariance

matrix, PLJ ], is given by

rliil(e) = 200(t) — 20y Q

Pl (1) = R + B, ©)
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3.2 | Fault detection test statistic
Having derived the residual vector, r>/1(¢,), and its associ-
ated covariance matrix, Py,’j ](tk), in Equations (5) and (6),
we now define a residual-space test statistic to determine if
a set of observed residuals between a specific sensor-filter
pair are adhering to their expected distribution. Since our
goal is to limit the assumptions on the type of fault (i.e.,
the fault could be a bias, an incorrectly stated noise covari-
ance matrix, or incorrect calibration of measurement func-
tion parameters), we did not model two competing distri-
butions as would be needed to employ a Likelihood Ratio
Test (LRT) (Kay, 1998). Instead, we focused on the distribu-
tion resulting from summing the squared Mahalanobis dis-
tance (De Maesschalck, Jouan-Rimbaud, & Massart, 2000)
across a sequence of pre-update residuals and selecting a
threshold based on a desired probability of false alarm, Py
Given a Z;-dimensional Gaussian distribution with
mean g, and covariance matrix ¥, the squared Maha-
lanobis distance, d?, between an observation y, and the
centroid of the distribution is then given by

d>=(y - =y — . ™)

Additionally, d? is known (Casella & Berger, 2002; De
Maesschalck et al., 2000) to follow a Chi-Square distribu-
tion with Z; degrees of freedom. Moreover, the sum of M
independent d? distances is also known to follow a Chi-
Square distribution with M X Z; degrees of freedom. As
proven in Maybeck (1982) and Young and Mcgraw (2003),
Kalman filter pre-update residuals form a zero-mean white
sequence. As such, we let y = rliJl(¢,) from Equation (5),
T = PL‘;J' ](tk) from Equation (6), and g = 0. Subsequently,
we can compute the fault detection test statistic, X[*i,j]’
using

Z Il e [Pl e, ®)

LJ]

where M is the number of trailing samples in the residual
sequence, a fault is declared if

and «a is derived from the overall desired system P s which
is further discussed in Section 3.3. It is important to note
the test above can only determine if any of the I sen-
sors providing measurement updates to filter j is faulty. In
order to determine the actual sensor(s) within filter j that
are faulty, additional assumptions and computations must
be made, as shown in the next section.
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3.3 | Faultidentification process

Up to this point, we’ve defined how a time sequence of
residual vectors from a specific sensor-filter combination
may be tested for likelihood, without making assumptions
on the domain of the sensor measurement, or the type of
fault. Here, it is important to emphasize that a fault detec-
tion derived from a set of residual vectors from a particular
sensor-filter pair (i, j) does not imply that sensor i is faulty.
It is only an indication of an inconsistency between the
information provided by sensor i and the rest of the sensors
informing filter j. In other words, low-likelihood residuals
can then either be caused by faulty measurements, z!'!, or
faulty estimated measurements, 2//1, the latter of which
is influenced by all sensors informing filter j whose state-
space overlaps with sensor i. Therefore, in order to iden-
tify and exclude the faulty measurements, we developed a
“fault consensus” process that associates the presence of a
sensor with the presence of a fault in order to determine
the most probable sensor associated with faulty results.
Though the proposed method is not limited to just single
sensor faults, it is best to begin our discussion with this
case before scaling to the generalized multiple simultane-
ous fault cases. The next two sections develop the single
and multiple fault cases, respectively.

3.3.1 | Single serial faults

As described in Section 2, a commonly assumed fault sce-
nario is a single sensor fault per testing epoch (i.e., during a
single M-sample test window in our case). Multiple faults
are still considered, but restricted to occur serially. In this
case, we set up our fault identification process by creating
J =1 filters, each informed by a unique set of I — 1 sen-
sors. In other words, each filter excludes one of the I sen-
sors. Here, it is important to note two points. First, since we
expect all-source sensors to be non-identical, some states
may become unobservable within a particular filter if the
only sensor that has observability over them is excluded
from that filter. To prevent potential numerical issues with
the covariance of unobservable states, we can remove
unobservable states from each subfilter or perform a
stochastic observability test (Bageshwar, Gebre-Egziabher,
Garrard, & Georgiou, 2009) to detect unbounded growth
in a subfilter’s position error covariance matrix. Second, as
with other parallel-filter methods, a “main filter” that is
informed by all sensors is also created, but in our method,
we do not use its information for solution separation com-
parisons, thereby eliminating the need for computing the
cross-covariance terms between it and all other filters. Hav-
ing designed the set of filters using this method guarantees,

under the assumption that, at most, one sensor can fail at a
time, at least one of the filters will be completely unaffected
by faulty measurements. As shown below, we can then use
this axiom in conjunction with the full set of (i, j) residual
test results to determine the culprit sensor.

We begin the fault identification process by populating
the I X J (which becomes I X I in this single-fault case) test
results matrix, T, using

0, Sensor i does not inform filter j,
T(i, j) = {0, Xl*i,jl < x*(1 — a, M x Z;) (no fault detected),  (10)
, )(E‘i > x*(1 — a, M x Z;) (fault detected).

—

Figure 1 illustrates the information from each sensor-filter
pair needed to populate T in the case where the j* filter
excludes the j® sensor. In the figure, each of the i=1,..,I
rows corresponds to the measurement, zI'l, and its asso-
ciated error covariance matrix, Rl obtained from the it
sensor. These two parameters define the modeled distribu-
tion of the sensor measurement and make up the first half
of Equations (5) and (6), respectively. Next, each of the j =
1,..,J (J =I in this single fault case) columns corresponds
to the estimated measurement, 2!/, and its associated error
covariance matrix, P[i‘i’f 1. These two parameters make up the
remainder of Equations (5) and (6) and define the mod-
eled distribution of the estimated sensor measurement. As
shown in the figure, these last two parameters are influ-
enced by all sensors informing the filter in the jth column,
which corresponds to all sensors except the jth sensor.

A fault is declared when T contains any non-zero
entries. Here, it is important to highlight that based on
Equation (10), T(i, j) = 0 when Sensor i does not inform
filter j, which forces the diagonals of T to zero in the J =T
case. This means a fault can be declared when any of the
I? — T test statistics from Equation (9) that are contained
in T result in a fault. Given each row in T is informed by a
particular sensor, we expect some interdependence among
the “cells” in T; however, since this dependence is not pre-
dictable a priori, we can upper-bound the family-wise error
rate on the entire set of tests found in T using a Bonferroni
correction (Bonferroni, 1936), which is not affected by such
dependence (Goeman & Solari, 2014). Therefore, in order
to guarantee a maximum system (i.e., family-wise) Py <
A max» We compute each a from Equation (9) in T using

amax
o= ool (11)
Table 4 summarizes individual o values resulting
from a series of desired «,,, rates in the range
Amax € {1x107°,1x 107"} along with actual Pj rates
achieved in the Monte Carlo simulations detailed in
Section 4.
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[
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Sensor [ ((Q—} L0 RUL| T(1,1) | T(L,2) | T(I,3) e 0
1=1
FIGURE 1 Illustration of the multi-sensor multi-filter test statistic matrix, T [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com and www.ion.org]

Under our proposed method, if a fault is declared, the
culprit sensor may only be identified if a consensus is
reached. That is, since each sensor is excluded from one
filter, we can identify a faulty sensor if only a single fil-
ter (namely the filter that excluded it) remains fault free.
Mathematically, we first compute the fault scores vector, s,
whose dimension is equal to the number of filters, J, using

I
s() = ), TG, j), (12)
i=1

which produces a sum across the rows (sensors) for each
column (filter) in T. Once computed, we have four possible
scenarios:

1. If s contains all zeros (i.e., [0 0 0 0]), then no fault has
been detected.

2. If s contains at least one non-zero and more than one
zero (i.e., [0 0 1 0]), then a fault is declared, but the
culprit is not yet identified. However, the SAARM posi-
tion estimate is still bounded by the Guaranteed Posi-
tion Zone (GPZ) defined in Section 3.4.

3. If's(j)is the only zero remainingin s (i.e., [0 111]), then
a fault is declared and the culprit sensor is the sensor
that was excluded from the j™ column in T, or the j
filter, if constructed according to Figure 1.

4. Finally, if s contains no zeros (i.e., [1 1 1 1]), then more
than one sensor is faulty, and the assumptions of the test
have been violated.

Each of these “states” can be used in conjunction
with the performance guarantee computations presented
in Section 3.4 in order to continuously inform users of
their APNT protection status. Depending on the type and
dynamics of the fault, as well as the set and type of sen-
sors in the system, the results in T may continue to change
during every epoch and eventually lead to a culprit. If
and when a culprit is determined, the corresponding fault-
free filter is used as the new main filter, and a new set
of I — 1 filters is initialized using its state-space estimate
and associated error covariance matrix. The process can
then be repeated sequentially for multiple serial faults with
the assumption that a second fault does not occur during
the first M samples after having re-spawned the filter set,
which will be addressed in the next section.

3.3.2 | Simultaneous faults

The serial-fault methodology described above can be eas-
ily scaled to enable detection of a secondary fault occur-
ring during the first M samples after an initial fault, as
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TABLE 1 Sensor-filter configuration for layer J,, I = 5 sensors
Included in filter
Sensor 1 2 3 4 5
1 . . . .
2 . . . .
3 . . . .
4 . . . .

5 . . . .

"This filter is uncorrupted by faulty Sensor 3 measurements

well as multiple simultaneous faults. To do so, we first re-
define the number of filters required, J, the structure of
the associated test results matrix, T, and the dimension of
the faults score vector, s, as functions of the assumed max-
imum number of simultaneous faults, which we define
as a “layer.” In general, the number of additional filters
required, J, for each layer, N, is given by

I n
I—N> T NIT=-N) 13)

JN s (
As shown in Section 3.3.1, in layer one, we assumed N = 1
simultaneous fault was possible and created

I n
1= (I— 1) T 14)

filters each excluding one sensor, which were then used to
populate T; € R™1, detect the fault, and identify the sin-
gle culprit using s;. If we now assume N = 2 simultaneous
faults are possible, we require an additional

I I -1
2= (I - 2> Ta0-2) 2 (15)

filters each excluding two sensors, which are then used to
populate T, € R, Using this two-layer configuration,
the culprit sensor in a single fault scenario can continue to
be identified as previously described, using T; and s;. In
the case of a simultaneous fault, s; indicates that the sin-
gle fault assumption has been violated (no zeros remain),
which prompts the system to use T, and s, to identify the
two culprits. In the case of a secondary fault during the first
M samples after an initial fault, the subset of filters in the J,
layer that excluded the first culprit corresponds exactly to
the new J; layer of filters needed after re-spawning, which
enables uninterrupted fault detection.

For example, consider a system with I = 5 sensors where
up to two simultaneous sensor faults are assumed. The first
layer consists of J; = 5 filters, and each filter excludes one
of the sensors, as shown in Table 1. Using Equation (15),
the second layer consists of J, = 10 filters, and each fil-
ter excludes two of the sensors, as shown in Table 2. Sup-

TABLE 2 Sensor-filter configuration for layer J,, I = 5 sensors

Included in filter

Semsor 1 2 3 4 5 6 7 8

A W oD =

5 . . . . . .

"These filters are uncorrupted by faulty Sensor 3 measurements
" This filter is uncorrupted by faulty Sensor 3 and Sensor 5 measurements

TABLE 3 Sensor and fault configuration for Monte Carlo
simulations
Affected
Scenario Fault sensor Other sensors
1 1.0 [m/s] bias VEL1 POSI1, VEL2, POS2
2 2x R scale VELI1 POS1, VEL2, POS2

VELL: 2D velocity sensor, R = diag([lz, 12]) [m?/s%], Update Rate: 0.5 [s]
POSI: 2D position sensor, R = diag([Sz, 52]) [m?], Update Rate: 1.0 [s]

VEL2: 2D velocity sensor, R = diag([zz, 22]) [m?/s?], Update Rate: 1.5 [s]
POS2: 2D position sensor, R = diag([loz, 102]) [m?], Update Rate: 2.0 [s]

pose Sensor 3 experiences a fault. In this case, Filter 3 is
uncorrupted by any faulty measurements, and its corre-
sponding column in T; € R> uniquely contains all zeros.
After determining Sensor 3 is the culprit via Equation (12),
Sensor 3 is taken offline and a newsetof J; =1 —1=4
filters, each excluding one of the remaining four sensors,
is spawned. Without a J, layer, this would mean the sys-
tem could not detect a subsequent fault while it repop-
ulates the new T, € R**, However, having the J, layer
already running, we can see the new J; layer of filters
is actually equivalent to the subset of J, filters that had

TABLE 4 False alarm rate summary for SAARM simulations,
Scenario1(I = 4)

Desired Individual @ =

Py < pax X/ T> = 1) Actual P
1.0x 1073 8.3x107° 6.0 x 107
1.7x 1073 1.4x107* 9.0x107*
2.8x1073 2.3x107* 1.3x 1073
4.6x1073 3.9x 107 1.7x 1073
7.7x1073 6.5x 1074 2.5%x1073
1.3x 1072 1.1x 1073 4.7%x1073
2.2x1072 1.8x 1073 8.9x 1073
3.6 X 1072 3.0x1073 1.5x 1072
6.0 X 1072 5.0x1073 2.6 X 1072
1.0x 107! 8.3x 1073 4.2x1072
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SAARM GPZ visualization, growing bias on VEL1
[ | | | T T T T T |
60 - Faulty sensor: VELI1 Truth B
Bias: 0.0 m/s A Main
R scale: 1z A Fault start
95 - Time: 32.5s ® No VELL B
® No POS1
No VEL2
. ® No POS2
50 + e GP7Z: No Fault ||
45 - B
A
40 - B
=)
.8
+~
‘B
Q? 35+ B
SN
30 - B
25 + B
00 0 O
0 0 0 O
20 - Tt =19 0 0 0 i
00 0 0
s(tg,) =10 0 0 O
151 (tr) = [ IR
| | | | | | | | | |
-10 -5 0 5 10 15 20 25 30 35
x-Position
FIGURE 2 Example SAARM GPZ: No fault present. In this example, there is no fault induced into any of the four sensors, and no fault has

been detected (all entries in s are zero), which is shown to the user as a green GPZ. All filters are uncorrupted and the main filter is consistent.

The GPZ is comprised of the union of the 95% position error ellipses from all filters and contains the true position at least 95% of the time [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

also excluded Sensor 3, which guarantees uninterrupted
fault detection after detecting an initial fault. Finally, sup-
pose both Sensor 3 and Sensor 5 experience a simultane-
ous fault. In this case, every single filter in the J; layer (i.e.,
every column in Table 1) would be corrupted and no col-
umn in T; would contain all zeros. However, the J, filter
that excluded both Sensor 3 and Sensor 5 would be guar-
anteed to be uncorrupted by faulty measurements, and
its corresponding column in T, € R>1° would uniquely
contain all zeros. In principle, this process can be scaled
up to any number of layers, corresponding to any num-
ber of simultaneous faults. It is important, however, to
consider the (previously mentioned) stochastic observabil-
ity of each state as we exclude additional sensors and the
trade-off in computational power required to support the

growing number of required filters for each additional
layer.

3.4 | Performance assumptions
and guarantees

Having defined an all-source fault detection, identifica-
tion, and exclusion process, we now turn our attention to
providing users with a measure of system performance
guarantee without constraining the nature of the fault-
present condition. Though FDE literature often provides
a rigorous definition of system “Integrity,” here we aim to
simply provide a guarantee of system performance under
a particular set of assumptions. As already mentioned,
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SAARM GPZ visualization, growing bias on VEL1
I I I I I

\
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Faulty sensor: VEL1
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FIGURE 3

Example SAARM GPZ: Undetected fault. In this example, a 1.0 [m/s] bias is affecting the VELI sensor, but no fault has been

detected yet (all entries in s are still zero), which is shown to the user as a green GPZ. All filters except Filter 1 are corrupted and potentially

inconsistent. The GPZ is comprised of the union of the 95% position error ellipses from all filters, and it is guaranteed to contain the true position

at least 95% of the time since one of the filters is guaranteed to be uncorrupted [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com and www.ion.org]

under our all-source fault-agnostic goal, we are unable
to define the nature of the fault-present condition or
the distribution of the fault-present test statistic, thereby
precluding any computations involving the probability
of missed detection or missed alert. However, given the
multi-filter FDE mechanism already in place, we can still
provide users with a GPZ, or a position error ellipsoid
based on both the filter-computed position error statistics
and the assumption that one of the filters in the system is
guaranteed to be fault-free and therefore consistent.

In general, the GPZ is constructed under one condition:
assuming at least one of the filters is informed entirely by
properly modeled, uncorrupted sensors, then at least one fil-
ter contains consistent state estimation error statistics. In
other words, since it is assumed that one of the filters is
fault-free (based on properly designing the set of filters),

then the estimated error statistics from one of the filters
truly describe actual errors committed by the filter. Defin-
ing oy as the acceptable error bound, we can then derive an
accurate 100(1 — a;)% error ellipse on the horizontal posi-
tion using the uncorrupted filter’s horizontal position esti-
mate and its associated error covariance matrix. Given the
uncorrupted filter is not identifiable prior to determining
a culprit, we union the 100(1 — a;)% horizontal position
error ellipses from all of the filters, thereby guaranteeing
the true horizontal position is contained within the union
with at least a 100(1 — ¢t;)% probability, since the union
can only grow the resulting ellipse. This guarantee is valid
regardless of the status of the underlying fault detection
and identification process.

To clarify the difference between the GPZ and other
ellipsoids found in integrity literature, we examine a few
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FIGURE 4 Example SAARM GPZ: Unidentified culprit. In this example, a 3.0 [m/s] bias is affecting the VEL1 sensor, and a fault has been
detected (at least one entry in s is non-zero), but no culprit has been identified (there is more than one zero entry in s), which is shown to the
user as an orange GPZ. All filters except Filter 1 (“No VEL1”) are corrupted and the main filter is clearly inconsistent. The GPZ is comprised of

the union of the 95% position error ellipses from all filters, and it is guaranteed to contain the true position at least 95% of the time since one

of the filters is guaranteed to be uncorrupted [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and

www.ion.org|

important notes. The GPZ derivation begins with each
subfilter’s estimate of position. For each subfilter, the
acceptable error bound, a;, represents the probability of
the true vehicle position lying outside the error ellipsoid
centered on the subfilter’s position estimate and derived
from the subfilter’s position error covariance matrix. If
an undetected fault is present in the system, only one
subfilter is guaranteed to have consistent error statistics,
meaning only one 100(1 — ;)% error-bound ellipsoid is
guaranteed to accurately describe the probability of con-
taining the true vehicle position. Since the uncorrupted
subfilter is not knowable prior to identifying a culprit, we
cannot choose a single correct error-bound ellipsoid to
display to the user. Therefore, we union all error-bound
ellipsoids from all subfilters, thereby guaranteeing the

“correct one” is contained. Finally, since the correct one
is guaranteed to contain the true vehicle position with
a 100(1 — a;)% probability, then unioning additional
areas can only increase the probability of capturing the
true vehicle position. As later shown, this union does
not produce a contiguous shape centered about a mean
position estimate, it is simply the union of all individual
ellipsoids centered on their respective subfilter position
estimate. Note the main filter position estimate and error
statistics are not used in the computation of the GPZ.

To illustrate our GPZ, consider a 2D navigation problem
using I = 4 sensors. The sensor suite is the same as used in
the simulations in Section 4 and is summarized in Table 3.
As shown, the sensor suite is composed of two 2D position
sensors: POS1, POS2, and two 2D velocity sensors: VELI,
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FIGURE 5

Example SAARM GPZ: Culprit identified. In this example, a 3.1 [m/s] bias is affecting the VELI1 sensor, a fault has been detected

and the culprit has been identified (there is a single zero-entry in s), which is shown to the user as a red GPZ. All filters except Filter 1 (“No
VEL1”) are corrupted, and the main filter is clearly inconsistent. The GPZ is comprised of the union of the 95% position error ellipses from

all filters, and it is guaranteed to contain the true position at least 95% of the time since one of the filters is guaranteed to be uncorrupted.

Immediately after this time step, the VEL1 sensor is taken offline, and a new set of filters is re-spawned from Filter 1 [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

VEL2. The system dynamics are propagated using a 2D
kinematics model driven by 2D First Order Gauss-Markov
(FOGM) acceleration as described in Section 4. In order to
best visualize the effects of faults on GPZ, the fault has been
defined as a growing velocity bias starting from 0 [m/s] at
t, = 40 [s], growing at a rate of 0.1 [m/s/s], and applied to
the x-dimension measurements from the VELI sensor. Fig-
ures 2 through 5 illustrate a time sequence of events along
a sample instantiation of the simulation. As shown in the
figures, an error bound of «; = 0.05 was used to produce
95% error ellipses. The GPZ derived from the union of the
95% horizontal position error ellipses from all subfilters is
guaranteed to contain the true vehicle position at least 95%
of the time, regardless of the presence of a fault, ability to
detect, or ability to determine a culprit. In all examples, the

main filter is informed by all sensors but its states and their
error covariances are not used in the detection of faults
or the computation of GPZ. Finally, though these sample
illustrations were limited to a single fault and two dimen-
sions, the underlying axiom and assumptions are still valid
for multiple faults, and the error ellipses can be scaled to
3D error ellipsoids, if desired.

4 | SIMULATION RESULTS

The proposed method was evaluated via a series of Monte
Carlo simulations using two vehicles, each informed by the
same set of all-source sensors described below and sum-
marized in Table 3. The FDE function was provided by the
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FIGURE 6 Detection performance comparison, SAARM vs. Sol. Sep., 1.0 [m/s] bias. Though both methods appear to provide useful

detection performance, the solution separation detector outperforms SAARM by approximately 17% at the optimal Neyman-Pearson detection
point [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org|

proposed SAARM algorithm in the first vehicle while the
normalized horizontal position solution separation test
statistic as implemented in Young and Mcgraw (2003) was
used for the second vehicle. For all simulations, the true
system dynamics were driven by a 2D kinematic model
given by

Xp(t) Xu(t) 0
) =|%0|=] %O [+] o [ a6
X,(1) —Tixa(t) w(t)

where x, is the vehicle’s 2D position in [m], x, is
the 2D velocity in [m/s], x, is the 2D acceleration in
[m/s?] and propagated by a FOGM process with time

constant 7, = 10 [s], and variance o, = 0.01> [m?/s*],
making w(t) a 2D white Gaussian noise process with
E[w(®w(t +1)T] = Q5(r) and

Q=(1.5x10"3)?2 I [m?/s°]. a7)
2X2

Each vehicle in the simulation was informed by two
velocity sensors and two position sensors for a total of four
(I = 4) sensors. Sensor 1 (“VEL1”) measurements were
modeled as

2(t) = x,(t) + v, (18)

12

E[v,[j]v,[j]T] =R, = [ o 1';] m2/s%],  (19)
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Data Distribution: SAARM T Matrix, 1.0 m/s bias on VEL1
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FIGURE 7 Chi-Square test statistic distributions in the SAARM T matrix. The expected H, degrees of freedom are derived using Equation

(9) and are based on the sensor update rate, measurement dimension, and the SAARM monitoring time window. In this case, the residual test
statistic formed between VELI and subfilter 3 (“No VEL2”) provided the best detection performance [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and www.ion.org]

and its update rate was set to 0.5 [s] or 2 [Hz]. Sensor 2
(“POS1”) measurements were modeled as

22(t) = x,(t) + vy, (20)

E[VIEZ]VIEZ]T] =Rt = [5:)2 502] [m?], 1)

and its update rate was set to 1.0 [s] or 1 [Hz]. Sensor 3
(“VEL2”) measurements were modeled as

2Bt = x,(t) + v,[f], (22)
E [VI[(3]VI[(3]T] _ R[3](tk) _ [202 202] [mz/sz]’ (23)

and its update rate was set to 1.5 [s] or 0.67 [Hz], and finally,
Sensor 4 (“POS2”) measurements were modeled as

24t = x,(t) + v, 24)

u 102 0
E[v1[€4lvl[€4] ] _ RII(t,) = [ 0 102] m (s)

and its update rate was set to 2.0 [s] or 0.5 [Hz]. It is
important to note here the different update rates among
the sensors will lead to a different number of samples
(M) and Chi-Square degrees of freedom captured for each
sensor within the fixed SAARM monitoring time window
discussed below.

The fault-free (H,) condition was characterized using
10,000 Monte Carlo trials where no faults were introduced
into the system and all measurements were drawn from
their modeled distributions. Next, two fault-present (H;)
scenarios where simulated, each using additional 10,000
Monte Carlo trials. The two fault-present scenarios are
summarized in Table 3. In the first scenario, measure-
ments from Sensor 1 (“VEL1”) were corrupted with an
unmodeled constant 1.0 [m/s] x-velocity bias, starting at
ty =40 [s]. In the second scenario, the measurements
from Sensor 1 (“VEL1”) sensor were corrupted by scaling
R/ by a factor of 2x, again starting at t, = 40 [s], and
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Chi-Square solution separation test statistic distributions for each of the required subfilters. The expected H, degrees of free-

dom (i.e., 2) are based on testing the 2D horizontal position solution separation vector. In this case, subfilter 1 (“No VEL1”) provided the best
detection performance [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

without specifying the change in the filter measurement
model.
For each trial, the initial state estimation error covari-
ance matrix was set to
Pye(to) =diag([1 1 1 1 0012 001%]), (26)
while the initial state estimate, X(t,), was set to zeros, and
the true initial state was drawn from a N (0, Pg¢(t,)) distri-
bution. Each trial was propagated using At, = 0.5 [s], start-
ing at t; = 0 [s]. The SAARM monitoring period was set
to 30 [s], yielding M = 60 for Sensor 1, M = 30 for Sensor
2, M = 20 for Sensor 3, and M = 15 for Sensor 4 in Equa-
tion (9). All trials were terminated at t;, = 70 [s], at which
point both the SAARM and solution separation tests statis-
tics were recorded. Here, it is important to note that at the
time each trial was terminated, the associated SAARM test
matrix, T, was based on the sum of residual-based Chi-
Square samples over the trailing 30 [s] (i.e., the monitor-
ing period), while the normalized solution separation test

statistic was based on the single solution-separation vector
associated with the final measurement update prior to ter-
mination.

Figure 6 compares the detection performance between
the SAARM and normalized solution separation test statis-
tics for Scenario 1 (1.0 [m/s] bias). Meanwhile, Figures 7
and 8 illustrate the test statistic distributions for the H, and
H; conditions in the SAARM T matrix and each solution
separation subfilter, respectively. As shown, in the case
of a bias-type fault, both SAARM and normalized solu-
tion separation provide useful detection performance, with
solution separation outperforming SAARM by approxi-
mately 17% at the optimal Neyman-Pearson (Kay, 1993)
detection point. The results from Figure 7 indicate SAARM
detection performance was mostly derived from the VEL1
vs. subfilter 3 (“No VEL2”) residual test statistic. Mean-
while, the results from Figure 8 indicate solution sep-
aration detection performance was mostly derived from
the subfilter 1 (“No VELI”) solution separation test
statistic.
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FIGURE 9 Detection performance comparison,
SAARM vs. Sol. Sep., 2 X R scale. The solution separation
detector performs marginally and is outperformed by

SAARM by approximately 81% at the optimal

0.9

Neyman-Pearson detection point [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com and www.ion.org]
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Data Distribution: SAARM T Matrix, 2 x R scale on VEL1
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FIGURE 10 Chi-Square test statistic distributions in the SAARM T matrix. The expected H,, degrees of freedom are derived using Equa-
tion (9) and are based on the sensor update rate, measurement dimension, and the SAARM monitoring time window. In this case, the residual
test statistic formed between VEL1 and subfilter 3 (“No VEL2”) provided the only detection performance, which was marginal [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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FIGURE 11 Chi-Square solution separation test statistic distributions for each of the required subfilters. The expected H,, degrees of

freedom (i.e., 2) are based on testing the 2D horizontal position solution separation vector. In this case, subfilter 1 (“No VEL1”) provided the

best detection performance [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

Figure 9 compares the detection performance between
the SAARM and normalized solution separation test statis-
tics for Scenario 2 (2 X R scale). Similarly, Figures 10 and
11 illustrate the test statistic distributions for the H, and
H; conditions in the SAARM T matrix and each solution
separation subfilter, respectively. In the case of a wrongly
stated covariance matrix fault type, both SAARM and nor-
malized solution separation provide some detection perfor-
mance; however, in this case, the solution separation detec-
tion performance was marginal, with SAARM outperform-
ing it by approximately 81% at the optimal detection point.
Again, the results from Figure 10 indicate SAARM detec-
tion performance was mostly derived from the VEL1 vs.
subfilter 3 (“No VEL2”) residual test statistic, while the
results from Figure 8 indicate solution separation detection
performance was mostly derived from the subfilter 1 (“No
VEL1”) solution separation test statistic.

Table 5 summarizes the performance of the proposed
GPZ error bound. Each row of Table 5 is based on 10,000
Monte Carlo trials and displays the percentage of time
the true horizontal position was contained within the 95%

TABLE 5 Horizontal position error consistency, 95% error
bounds
Percentage of samples within
error bound
Main filter SAARM
Scenario covariance GPZ
Fault-free scenario 95.19% 99.72%
Scenario 1: 1 [m/s] bias 78.63% 98.97%
Scenario 2: 2x R scale 94.04% 99.60%

error bound derived from either the main filter position
error covariance matrix or the SAARM GPZ. As shown, the
95% error bound derived from the main filter position error
covariance matrix underestimated the true error in both
fault-present scenarios. Meanwhile, the 95% error bound
derived from the SAARM GPZ successfully bounded the
true error at least 95% of the time, as expected.

The results from the above scenarios indicate fault
types that systematically corrupt the state-space estimate
(namely the position estimate) of the subfilters that are
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more easily detected via solution separation methods than
via sensor-specific (velocity in this case) residual test statis-
tics. In contrast, fault types that do not systematically
affect the subfilter solutions are not easily detected via
solution separation methods, while sensor-specific resid-
ual test statistics provide excellent detection performance.
It is also important to note that based on these two cases,
the SAARM approach generally provides the best detec-
tion performance if the fault type is unknown or not con-
strained to a bias, which exactly meets the original research
objective laid out in Section 1. Additionally, though not
shown here for brevity, a third set of Monte-Carlo trials
with a larger velocity bias (2.0 [m/s]) led to identical detec-
tion performance between SAARM and solution separa-
tion (i.e., when the bias is large enough, both detectors
perform equally). The motivation for using the proposed
method is also highlighted by the ability to provide per-
formance guarantees without a fault-present model via the
proposed GPZ.

5 | CONCLUSIONS

This research has proposed a novel method for fault
detection and exclusion in all-source navigation systems.
The proposed method, referred to as Sensor-Agnostic All-
source Residual Monitoring, was shown to provide reliable
FDE in cases where the fault type is unknown or uncon-
strained, such as when using emerging all-source sensors
with measurement models that are not well understood.
When compared to traditional filtered approaches such as
normalized solution separation, the proposed method was
shown to be approximately 17% less sensitive to detect-
ing bias-type faults, but outperformed such methods by
approximately 81% when the fault was defined by changes
in covariance. Finally, the mechanization of the proposed
method lended itself to a practical and robust guarantee
of performance for the user in the form of a so-called
Guaranteed Position Zone. The proposed GPZ ellipsoid
error bound was shown to contain the true vehicle posi-
tion within the specified error rate during all phases of
the FDE process and without the need to constrain the
fault-present distribution or probability of missed detec-
tion. This research directly enables self-correcting plug-
and-play open architecture navigation systems as well as
APNT in the challenging application of all-source multi-
domain navigation. Future work in this area will focus on
experimental results using real-world data, further model-
ing and simulation in the case of multiple simultaneous
faults, and research into how to compare the GPZ ellip-
soid to a predetermined alert limit in order to warn users
of degraded performance.
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