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Air data systems require costly calibration of their static pressure sensors to characterize errors caused by the act of

flying. Altitude-based methods for measuring these so-called static position errors, such as the tower flyby, produce

accurate results but require an elaborate flyby site, multiple experiments to capture the relationship between error

andairspeed, andare limited to subsonic airspeeds due to inherent hazards to land-basedandaircraft structures from

low-altitude supersonic flight. Airspeed-based methods using the Global Positioning System (GPS) are generally

easier to execute, but they tend to yield less precise results and still require multiple experiments. Additionally, they

require temperature probe calibration from external sources. This paper proposes a self-contained onlinemethod for

complete air data calibration. The proposed method uses a Kalman smoother to fuse GPS altitude and airspeed

measurements, aircraft attitude, and air data to produce the full static position error curve as a function of Mach

number in a single experiment, with no need for external temperature calibration and with no supersonic limitations.

The proposed method is validated using T-38C flight data, and it is shown to reduce cost by 88% while modeling a

42% larger domain when compared to current methods.

Nomenclature

a = test-temperature speed of sound, ft/s
aSL = sea-level speed of sound, ft/s
bj = jth temperature optimization coefficient
Cn
b = body-frame to navigation-frame rotation matrix

Cb
w = wind-frame to body-frame rotation matrix

Hc = calibrated altitude, ft
Hic = instrument-corrected altitude, ft
hg = geometric altitude, ft
�hg = mean geometric altitude, ft

Kt = temperature recovery factor
Mic = instrument-corrected Mach number
Mpc = position-corrected Mach number, M
P = total number of smoothing spline knots
Pa = ambient pressure, psi
Ps = measured static pressure, psi
PT = total pressure, psi
P0 = ambient pressure linearization point, psi
S = number of data samples
Ta = ambient temperature, K
Tic = total temperature, K
TSL = sea-level standard temperature, K
Tstd = test-altitude standard temperature, K
vg = ground velocity vector, ft/s
vj = jth ground speed component (north, east, down), ft/s
vT = true airspeed, kt
vW = wind velocity vector, ft/s
vWj

= jth wind speed component (north, east down), ft/s

vnT = true velocity vector in the navigation frame, ft/s
vwT = true velocity vector in the wind frame, ft/s
αc = corrected angle of attack, rad
αi = indicated angle of attack, rad

βc = corrected angle of sideslip, rad
βi = indicated angle of sideslip, rad

β̂j = jth model regression coefficient

γ = flight-path angle, rad
γv = true airspeed scale factor
ΔHpc = altitude position error correction, ft

ΔPp = static position error, psi

ΔVT = true airspeed error, ft/s
Δα = angle-of-attack correction, rad
δ = pressure ratio
Θ = pitch angle, rad
θ = temperature ratio
Φ = roll angle, rad
ϕ = ground track, rad
Ψ = yaw angle or true heading, rad

I. Introduction

P RODUCTION aircraft are typically equipped with a pitot-static
sensor system, which is sometimes referred to as an air data

system (ADS). TheADS is composed of a pitot tube, whichmeasures
the total air pressure; a static port, which measures static air pressure;
and an air data computer (ADC), which combines the sensor readings
into various airspeed and altitude instrument readings. TheADCuses
pitot-static relationships to convert differences between the total and
static pressures into airspeed readings, as well as static pressure
measurements into altitude readings. Because airspeed and altitude
are directly derived from pressure, they are intrinsically linked to lift
and drag that, in turn, are linked to key performance parameters such
as the climb rate, climb angle, specific range, and endurance.
Unfortunately, the act of flying through an air mass inherently
corrupts the static port’s ability to measure ambient pressure, or the
true static pressure in the undisturbed atmosphere, and creates an
error called the static position error (SPE) [1].
The SPE, or ΔPp, is defined as the difference between the static

pressurePs and the ambient pressurePa; and it is often normalized by
Ps when comparing readings from various flight conditions using

ΔPp

Ps

� Ps − Pa

Ps

(1)

Because it affects static pressure readings, the SPE is responsible
for errors in both airspeed and altitude. Such errors are not only
unique for each type of aircraft but also tend to change as a function of
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the Mach number and angle of attack (AOA). Many offline
algorithms have been used to estimate the SPEvia altitude or airspeed
measurements [1–7]. However, even the most advanced techniques
tend to either require a large logistical footprint, result in biased
estimates, or use assumptions that only apply to a small subset of
airframes. This paper proposes a novel algorithm for determining the
SPE that is significantly more accurate than state-of-the-art methods,
and it can be executed in an online fashion for any aircraft without the
need for multiple controlled experiments.

II. Background

A considerable amount of research has been devoted to solving the
problem of the SPE. Most notably, the flight-test community has
developed numerous experiments designed to characterize the SPE
for each type of aircraft across its entire Mach number domain. In
general, three types of techniques have been found in the literature:
altitude methods, airspeed methods, and pressure methods. Because
the SPE affects both altitude and airspeed, such techniques are aimed
at determining the airspeed and altitude error, respectively, as a
function of airspeed, using external truth sources. Meanwhile,
pressure techniques directly measure static pressure errors using
ambient pressure readings from weather balloons.

A. Altitude Methods

Themost widely used altitudemethod for SPE calibration is called
the tower flyby (TFB) [1,2]. A general TFB diagram is shown in
Fig. 1. TheTFB technique is easy to execute from a flying perspective
and produces data that are easy to process. The TFB aims to
determine an altitude error correction ΔHpc by comparing the
indicated altitude in the aircraft’s altimeter Hic to an externally
measured reference altitude Hc, which is derived from a theodolite
measurement at a ground-based observation tower. The aircraft flies
at a constant altitude and airspeed as it passes by the observation
tower, where the “truth” altitudeHc is recorded. At the same time, the
aircraft records its altitude Hic. The error correction relationship is
then given by

ΔHpc � Hc −Hic (2)

The error correction given byEq. (2) is then used to sample the SPE
across the entire Mach number domain for a given aircraft by
repeating the TFB at various Mach number conditions. The resulting
altitude error can be converted to a corresponding pressure error
using Eq. (1) with

Ps � PSL�1 − 6.87559 × 10−6Hic�5.2559 (3)

Pa � PSL�1 − 6.87559 × 10−6Hc�5.2559 (4)

where PSL is the atmospheric pressure at sea level on a standard day
[8]. The computed pressure error can then be used to infer airspeed
errors at similar conditions. Even though it is simple and accurate, the
TFB method is limited, in that it requires multiple (time-consuming)
flybys to sample the underlying ΔHpc�M� curve, a team of
individuals at the tower site to perform manual theodolite readings
and,most importantly, an established TFB sitewith known geometric

conditions. Additionally, obtaining TFB data for transonic and

supersonic conditions proves to be problematic due to sonic boom

concerns for nearby structures and personnel, as well as structural

concerns for the test aircraft due to the high dynamic pressure

experienced at supersonic speeds and low altitude.

B. Airspeed Methods

Airspeed methods for characterizing the SPE have seen the most

innovation in recent literature due to the emergence and proliferation

of theDifferential Global Positioning System (DGPS) inmilitary and

commercial aircraft. Several state-of-the art airspeed techniques [3,4]

[5–7] rely on a simplified two-dimensional transformation from the

body-frame (b-frame) to the navigation frame (n-frame), which is

usually referred to as the “wind triangle” and shown in Fig. 2.
In [5], the true airspeed error ΔVT, which is caused by the SPE, is

estimated using the DGPS by assuming a constant and unknown

wind vector. The aircraft flies a 360 deg turn at a constant indicated

altitude and indicated airspeed, which allow the unknown parameters

(vW and vTi
) to become observable to a linear model. The model is

developed using two-dimensional vector geometry from the wind

triangle via

vT � vW � vG (5)

⇒ �vTi
� ΔVT� � vW � vG (6)

⇒ ΔVT � vW � vG − vTi
(7)

⇒ ΔVT cos�ψ� � vWN
� vG cos�ϕ� − vTi

cos�ψ� (8)

ΔVT sin�ψ� � vWE
� vG sin�ϕ� − vTi

sin�ψ� (9)

⇒

2
666666666666664

vG1
cos�ϕ1�− vTi1

cos�ψ1�
..
.

vGM
cos�ϕM�− vTiM

cos�ψM�
vG1

sin�ϕ1�− vTi1
sin�ψ1�

..

.

vGM
sin�ϕM�− vTiM

sin�ψM�

3
777777777777775

2S×1

�

2
6666666666664

cos�ψ1� 1 0

..

. ..
. ..

.

cos�ψM� 1 0

sin�ψ1� 0 1

..

. ..
. ..

.

sin�ψM� 0 1

3
7777777777775

2S×3

2
664
ΔVT

vWN

vWE

3
775

(10)

where S is the number of data samples collected during the turn; vTi
is

the aircraft’s measured (or SPE corrupted) true airspeed (TAS); ψ is

the true heading; vG and ϕ are the ground speed and ground track,

respectively, as measured by the DGPS; ΔVT is the unknown TAS

Flyby line

Theolodite

Flyby tower

Fig. 1 Illustration of the tower flyby. Fig. 2 Illustration of the wind triangle.
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error; and vWN
and vWE

are the unknown constant wind vector

components. In contrast to similar methods such as the cloverleaf [3]

(in which the aircraft is flown at three distinct headings instead of

around a full circle), this method produces a statistical model for its

estimated variables that takes advantage of modern-day in-flight data

recording systems. However, it is limited in the fact that, much like

the TFB, it relies on multiple experiments to collect the necessary

point samples of the underlyingΔVpc�M� function, and some aircraft

may not be able to sustain a constant-speed turn at supersonic

conditions.Additionally, vTi
is difficult tomeasure because itmust be

derived from the indicated airspeed V ic and ambient temperature Ta,

which is given by

Ta � Tic

1� 0.2KtM
2
pc

(11)

where Tic is the measured temperature (known as the total

temperature), Mpc is the SPE-corrected Mach number, and Kt is a

temperature calibration parameter that must be derived from other

experiments such as the TFB or external sources such as weather

balloons. As shown, Eq. (11) requires knowledge of the SPE to

correctTic; however, determining the SPE requiresKt. Therefore, the

problem is usually solved by determining Kt before the SPE,

approximating Mpc with the indicated Mach number Mic when

deriving vTi
, and iterating until convergence is achieved. Having

obtained ΔVT , the subsonic airspeed error can be converted to a

pressure error using

ΔPp

Ps

�
�

1

�qcic∕Ps� � 1
−

1

�qc∕Pa� � 1

�
PT

Ps

(12)

where

qc
Pa

�
�
1� 0.2

�
VTi

� ΔVT

a

�
2
�
7∕2

− 1 (13)

qcic
Ps

�
�
1� 0.2

�
VTi

a

�
2
�
7∕2

− 1 (14)

a � aSL

��������
Ta

TSL

s
(15)

where aSL is the speed of sound at sea level on a standard day [8], and
TSL is the standard temperature at sea level. It is important to note that

Eqs. (13) and (14) take different forms for supersonic vT and vTi
,

which can be found in [2].
Another class of calibration methods [7,9–11] uses recursive

estimation techniques such as the Kalman filter (KF) [12] in order to

converge onto calibration parameters of interest. In [9], a so-called

scale factor γv, which was assumed to be constant for the entire

airspeed (or Mach number) domain such that

VT � γvVTi
(16)

was estimated usingDGPSmeasurements, aswell as often estimating

the AOA and angle of sideslip (AOS) simultaneously. These

recursive methods along with the angle of sideslip estimation

simulations in [13] provided the baseline foundation for the proposed

solution due to their use of the KF and nonlinear regression [14,15].

However, they were limited in the fact that the constant scale factor

assumption was only valid for small aircraft (namely, unmanned

vehicles) with a limited Mach number domain, as shown in Sec. IV.

Additionally, their use of a the KF was limited to static airspeed

conditions similar to the methods in [3,5,7], requiring once again the

need to repeat the experiment at multipleMach number conditions in

order to sample the underlying function.

C. External Reference Methods

One of the most accurate methods for estimating the SPE is the
pressure survey method [1]. In this technique, a weather balloon
capable of measuring Ta, Hc, and Pa is launched into the local air
mass. The balloon measurements of Pa can then directly be used to
compute the SPE using Eq. (1). Obviously, this method provides the
most accurate results because it directly measures the desired error.
However, it is rarely used unless experimental budgets are amenable
due to its cost and associated logistical footprint. Besides the
financial and logistical complications, the survey method is also
limited by the assumed constant atmospheric properties between the
balloon launch site and the area where the experimental aircraft
collects its data. This assumption also limits the ability to perform this
technique in an online fashion because the truth data needed for
calibration are only available and/or valid for a limited time and
geographical region. Similarly, in the pacer method [2], an aircraft
that has been previously calibrated can also be used as an external
reference when flown alongside the uncalibrated aircraft. The
benefits of such a method include the ability to compare both altitude
and airspeed simultaneously, model a large portion of the Mach
number domain in a single experiment (if a level acceleration is
performed), and model supersonic airspeeds at safe altitudes.
However, much like the pressure survey method, the pacer method
suffers similar logistical footprint issues because it may be difficult to
schedule a calibrated aircraft with a similar performance envelope as
the aircraft to be calibrated. Additionally, any errors incurred during
the calibration of the pacer aircraft will be directly transferred into the
calibration of the aircraft in question.

D. Contributions

Having explored the underlying characteristics of the SPEproblem
and the state-of-the-art solutions, we now turn to the proposed
algorithm, henceforth referred to as the Jurado–McGehee online self-
survey (JMOSS), and its specific contributions. The JMOSS
algorithm provides a drastic improvement over all other methods in
that it 1) uses a hybrid pressure–airspeed–altitude algorithm inside a
backward-smoothing extendedKalman filter (BSEKF) framework to
estimate ΔPp and Kt in an online fashion, without the need for
multiple experiments or external truth sources; 2) develops an
autonomous information-theory-based spline smoothing process,
referred to as the Akaike spline model (ASM), which balances model
complexity with error reduction and captures transonic and
supersonic effects with no prior knowledge of the ΔPp�Mic�
functional form; and 3) enables full Mach number domain
characterization, including transonic and supersonic effects using a
single experiment, without the need to sustain supersonic speeds.

E. Outline

The remainder of this paper is organized into three additional
sections. Section III develops the flying and data-processing
algorithms that enable the research advancements proposed herein.
Section IV presents results from a T-38C flight-test program,
comparing the proposed algorithm against state-of-the-art airspeed,
altitude, and pressure methods; and using weather balloon pressure
survey data as the reference truth. Finally, Sec. V summarizes the
research effort, and it presents conclusions and future work.

III. Methodology

This section describes the flight and data-processing algorithms
developed during this research, which enable the specific
contributions previously outlined. Figure 3 illustrates the information
flow from required input data to BSEKFoutput and subsequent ASM
estimation. The specific methods used are described in the following
sections.

A. Flight Technique

The flight technique needed tomeet observability requirements was
based on [5]. However, it was found that SPE estimates tend to become
noisy during nonlevel flight,most likely due to dynamic changes in the
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AOA and AOS during turns. As such, the flight technique for the

proposed algorithm was modified to meet the observability

requirements for wind estimation and Mach number dependency by

separating them into three distinct phases: 1) a constant-altitude

deceleration from Mmax to Mturn; 2) a constant-altitude constant-

airspeed 360 deg turn atMturn; and 3) a constant-altitude deceleration

from Mturn to Mmin, where Mmax is the aircraft’s maximum Mach

number,Mmin is the minimumMach number, andMturn is an arbitrary

constant turning speed within that domain. The three-phase design of

the flight technique provided three main efficiencies in the context of

data collection. First, it enabled collection of flight-test data across the

entire Mach number domain in a single experiment, without the need

for sustained supersonic conditions. Next, the constant-Mach-number

turn phase allowed for wind observability. Finally, the decoupling of

turning and deceleration allowed for the collection of noncorrupted

SPE data while still meeting wind observability requirements. Several

experiments were conducted in order to establish repeatability and

algorithm stability. Table 1 summarizes the actual values for the

aforementioned conditions that were used for experimental data

collection. Additionally, the experiments summarized in Table 2 were

performed in order to collect data for later comparison against the

proposed method.

B. Required Data

One of the key enabling technologies provided in this paper is the
development of a hybrid pressure–airspeed–altitude method using a
BSEKF. Table 3 summarizes all the required data and their sources
for the JMOSS algorithm. As such, pressure readings (PT and Ps)
from theADS are used directly, instead of indirectly viaHic orV ic. As
previously discussed, Tic is required in order to estimate Ta, which is
done inside the algorithm, eliminating the need for an external
temperature calibration. Next, the AOA and AOS from the ADS,
along with aircraft body angles from the inertial measurement unit
(IMU), are required to compute the necessary direction cosine
matrices (DCMs) to transform vectors from the wind frame
(w-frame) to the n-frame. Finally, the Global Positioning System
(GPS) velocity and altitude measurements are required to compute
the flight-path angle (a parameter needed in AOA and AOS
correction) and provide measurement updates to the BSEKF.

C. AOA and AOS Corrections

Begin by correcting the indicatedAOAαi for upwash errors, which
are a function of Mach number [16], using

αc � αi � Δα�Mic� (17)

Δα�Mic� � β̂0 � β̂1Mic � β̂2M
2
ic (18)

Flight
Path

Angle
Computer

Upwash
Correction

Frame
Rotation

TAS,
Altitude,

and Total
Temperature
Computer

BSEKF

ASM

GPS IMU ADS

Fig. 3 Data-processing flow for JMOSS algorithm.

Table 1 Summary of flight conditions for JMOSS experiments

Conditions

Experiment Hic, ft PA Mmax Mturn Mmin Duration, min

1 18,270 1.06 0.54 0.52 7.40
2 19,950 1.05 0.64 0.54 6.81
3 18,820 1.06 0.73 0.53 8.95
4 21,230 1.05 0.92 0.54 8.32

Table 3 Required data parameters for JMOSS algorithm

Name Symbol Source

Static pressure Ps ADS
Total pressure PT ADS
Total temperature Tic ADS
Indicated AOA αi ADS
Indicated AOS βi ADS
Roll angle Φ IMU
Pitch angle Θ IMU
Yaw angle Ψ IMU
North ground speed vN GPS
East ground speed vE GPS
Down ground speed vD GPS
Geometric altitude hg GPS

Table 2 Summary of flight conditions for comparison methods

Method Points Domain, Mach number Duration, min

Level turn 10 0.53–0.92 53.57
Cloverleaf 9 0.52–0.94 56.69
Tower flyby 10 0.54–0.90 42.00
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where Mic is derived from Ps and PT using standard pitot-static

equations [2], αc is the corrected AOA, αi is the indicated AOA, and
the functionΔα�Mic� is given by the second-order polynomial model

2
6664
Θ1 − γ1 − αi1

..

.

ΘS − γS − αiS

3
7775 �

2
6664
1 Mic1

M2
ic1

..

. ..
. ..

.

1 MicS
M2

icS

3
7775
2
664
β0

β1

β2

3
775 (19)

whereΘ is the pitch angle, S is the number of measurements, and γ is
the flight-path angle given by

γ � arcsin

�
−vD
vT

�
(20)

which can be approximated using the ground velocity vector vg by

γ ≈ arcsin

�
−vD
kvgk

�
(21)

assuming VT is much larger than the wind speed. Finally, the AOS is

corrected by projecting βi onto the corrected w-frame using

βc � arctan�cos�αc� tan�βi�� (22)

D. Ambient Temperature Optimization

Before processing the data using the BSEKF, an estimate of

ambient temperature is obtained byminimizing the least-squares [14]

cost function given by

min
b1;b2 ;b3

C�b1; b2; b3� �
XS
s�1

h
Tics

− T̂ics

i
2

(23)

where

T̂ics
� T̂as

�
1� 0.2K̂tsM

2
ics

�
(24)

T̂as � TSLfθH �hgs� � b1 (25)

K̂ts � b2 � b3M
2
ics

(26)

and the function fθH was given in [2]. Essentially, minimizing

Eq. (23) leads to optimal coefficients b1, b2, and b3 that best

approximate the actual Tic measurements while constraining T̂a to

follow the standard temperature profile given by hg, plus a constant

bias, andKt to depend onM
2
ic. Once converged, the resulting optimal

estimates of T̂a are used as control inputs in the BSEKF, for which a

better estimate of Kt, based onMpc, is produced alongside the other

variables of interest.

E. BSEKF Implementation

Using the notations described in [17], the main estimation engine

of the algorithm is driven by a six-state BSEKF [12,17–19] with

system dynamics defined by

_x�t� � G�t�w�t� (27)

x �
h
ΔPp vWN

vWE
vWD

Kt P0

i
T

(28)

G �
"
1 0 0 0 0 0

0 0 0 0 1 0

#
T

(29)

whereΔPp is the SPE; vWN
, vWE

, and vWD
are the wind components;

Kt is the temperature recovery factor;P0 is an ambient pressure about

which the relationship between the geometric altitude and pressure

altitude is linearized; and w�t� is a bivariate Gaussian white-noise

process with

E�w�t�� � � 0 0 �T (30)

E�w�t�Tw�t� τ�� � 0.1

�
δ�τ� 0

0 δ�τ�
�

(31)

The BSEKF discrete measurement model at time k is defined by

zk � h�xk; uk� � vk (32)

u �
h
Ps PT αc βc Φ Θ Ψ �hg T̂a

i
T

(33)

where �hg is the mean geometric altitude, and the vector vk is

composed of five independent Gaussian white-noise processes with

E
	
vk

 � 0

5×1
(34)

E
h
vTkvl

i
� δkl I

5×5
(35)

The nonlinear measurement function h in Eq. (32) estimates

incoming GPS groundspeed and altitude measurements, as well as

total temperature measurements, to form the vector

ẑk �
h
v̂nT � v̂W ĥg T̂ic

i
T

(36)

�
h
v̂N v̂E v̂D ĥg T̂ic

i
T

(37)

and is constructed from standard pitot-static equations [2] using

P̂a � Ps − Δ̂Pp (38)

M̂pc � f
�
P̂a; PT

�
(39)

T̂ic � T̂a

�
1� 0.2K̂tM̂

2
pc

�
(40)

â � aSL

��������
T̂a

TSL

s
(41)

v̂T � M̂pcâ (42)

v̂wT �
h
v̂T 0 0

i
T

(43)

v̂nT � Cn
bC

b
wv̂

w
T (44)

where the function in Eq. (39) was given in [2], the DCMsCn
b andC

b
w

are created using the frame transformations in [20] given by

Cb
w �

2
64
cos�αc� cos�βc� − cos�αc� sin�βc� − sin�αc�

sin�βc� cos�βc� 0

sin�αc� cos�βc� − sin�αc� sin�βc� cos�αc�

3
75 (45)
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Cn
b �

2
664
cos�Θ� cos�Ψ� cos�Ψ� sin�Θ� sin�Φ� − cos�Φ� sin�Ψ� sin�Φ� sin�Ψ� � cos�Φ� cos�Ψ� sin�Θ�
cos�Θ� sin�Ψ� cos�Φ� cos�Ψ� � sin�Θ� sin�Φ� sin�Ψ� cos�Φ� sin�Θ� sin�Ψ� − cos�Ψ� sin�Φ�

− sin�Θ� cos�Θ� sin�Φ� cos�Θ� cos�Φ�

3
775 (46)

the estimated wind vector v̂W is given by

v̂W �
h
v̂WN

v̂WE
v̂WD

i
T

(47)

the estimated geometric altitude measurement ĥg is given by

δ̂ � P̂a

PSL

; δ̂0 �
P̂0

PSL

(48)

Ĥc � fHδ
�δ̂�; Ĥc0 � fHδ

�δ̂0� (49)

θ̂ � fθH �Ĥc� (50)

Tstd � TSLθ̂ (51)

ĥg � �hg �
T̂a

Tstd

�
Ĥc − Ĥc0

�
(52)

PSL is the sea-level standard pressure, and the functions fHδ
and fθH

were given in [2].
To enable online estimation, the BSEKF is initialized with no prior

knowledge of the system states. As such, all initial estimates are set to
zero, with the exception of K̂t, which is set to one. Additionally, the
initial state estimation covariance matrix is set to a 6 × 6 identity
matrix. Because the turn data (Mic � Mturn) are not necessarily
collected at tk � 0, the BSEKF is processed “forward” from tk � 0
to tk � �M − 1�Δt, where Δt is the sampling period, in order to
converge onto accurate estimates of the wind states and

corresponding Δ̂Pp, Kt, and P0. Next, the resulting final state

estimates from the forward run are used as initial estimates for the

BSEKF smoothing run from tk � �M − 1�Δt to tk � 0 in order to

smooth any biased Δ̂Pp, Kt, and δP0 estimates that occurred on the

forward run before Mic � Mturn.

F. Akaike Spline Model

Having obtained the estimates from the BSEKF, one may choose

to fit amodel to the SPE observations with respect toMach number in

a number of ways. In this research, the resulting BSEKF estimates of

the SPE are modeled as a function of Mic using a novel linear

smoothing spline model referred to as the ASM. The ASM algorithm

is crucial in smoothingBSEKFoutputwith no prior knowledge of the

functional relationship between ΔPp∕Ps andMic for the ADS being

calibrated. Additionally, it allows for the accurate modeling of

unknown changes to the functional form in the transonic and

supersonic regions, as shown in Sec. IV.
Algorithm 1 illustrates a pseudocode implementation of the ASM

process. ASM smoothing begins with a simple second-order model

of the form

2
66664

Δ̂Pp1

Ps1

..

.

Δ̂PpS

PsS

3
77775

y

�

2
66664
1 Mic1

M2
ic1

..

. ..
. ..

.

1 MicS
M2

icS

3
77775

X

2
66664
β0

β1

β2

3
77775

β

(53)

where S is the number of measurements in the experiment. Next, a

simple optimization routine is executed to sequentially add

smoothing spline knots using

Algorithm 1 ASM � fitASM�mic;Δ̂Pp∕Ps�
Input: Δ̂Pp∕Ps, mic ▶ Inputs are BSEKF output for the SPE, and computedMic

1: y←Δ̂PP∕Ps ▶ Create observation vector

2: if max�mic� > 1, then ▶ If supersonic data present, add supersonic knotsMic ∈ �0.93; 1�
3: superSonic← true
4: end if
5: P←0, go←true ▶ Initialize loop with P � 0 kt
6: while go, do
7: X← createSplineRegressor(P,mic, superSonic) ▶ Use Eq. (54) to create X based on P

8: β̂, AICc�P� 3�←�XTX�−1XTy ▶ Compute P� 3 total coefficients and corresponding AICc value
9: if P � 0, then

10: Xprev, β̂prev, AICcprev←X, β̂, AICc ▶ First time in the loop, add a knot
11: P←P� 1
12: else
13: if AICc < 1.01 × AICcprev , then ▶ If AICc is decreased by 1%, try one more knot

14: Xprev, β̂prev, AICcprev←X, β̂, AICc

15: P←P� 1
16: else

17: X, β̂←Xprev, β̂prev ▶ Otherwise, stop the loop
18: go←false
19: end if
20: end if
21: end while
Output: ASM

ASM.Model ←β̂
ASM.deltaPp_Ps←Xβ̂
ASM.machIC ←mic
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2
666664

Δ̂Pp1

Ps1

..

.

Δ̂PpS

PsS

3
777775

y

�

2
666664
1 Mic1

M2
ic1

�Mic1
− s1�2� : : : �Mic1

− sP�2�
..
. ..

. ..
. ..

.
: : : ..

.

1 MicS
M2

icS
�MicS

− s1�2� : : : �MicS
− sP�2�

3
777775

X

2
666664

β0
β1
β2
..
.

βP�3

3
777775

β

(54)

where each sp, p � 1; : : : ; P, referred to as a knot, is a preselected
inflection point along the Mach number domain; and the operator
��� denotes that negative values of its argument are set to zero,
which is equivalent to multiplying by the Heaviside function
centered at the knot location. The optimization is based on
minimizing the resulting Akaike information criterion �AIC�c value
[21], which balances the error reduction with model complexity. At
each increment, a single spline knot is added to the linear model
[Eq. (53)] at a location within the Mic domain based on statistical
quantiles [22]. Then, the resulting �AIC�c model criterion is
compared to its previous value to verify that at least a 1%decrease in
�AIC�c is achieved by the additional knot. If, at any point, this
criterion is not met, the optimization is considered complete and the

spline model is finalized. Finally, if the particular experiment
contains supersonic data (i.e., Mic > 1), an additional seven knots
are automatically added evenly between Mic � 0.93 and Mic �
1.00 in order to capture any potential drastic changes to the
functional relation in the transonic and supersonic regions. Once
completed, the resulting model inferences, such as the prediction
interval (PI) are computed using [23].

IV. Results

Figures 4 and 5 illustrate the state estimation histories of the
forward and backward BSEKF passes for a single JMOSS
experiment, respectively. As shown in Fig. 4, the BSEKF states are

Fig. 4 Illustration of JMOSS BSEKF output on forward pass.
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unobservable (and inaccurate) during the forward pass fromMic �
Mmax until the turn is executed, and they begin to converge after

Mic ≤ Mturn as the measurements are processed fromMmax toMmin.

Using the final estimates of the forward pass (i.e., when

Mic � Mmin) as initial estimates for the backward-smoothing pass

produced stable and accurate estimates of all six states, as shown

in Fig. 5.

Figures 6 and 7 illustrate the results from a single JMOSS

experiment and all JMOSS experiments combined, respectively. As

shown in Fig. 6, a single JMOSS experiment yielded accurate results

across the entire Mach number domain, with no need for external

sources or prior knowledge, while simultaneously calibrating the

temperature recovery factor Kt. As shown in Fig. 7, combining

the BSEKF results from all four experiments slightly increased the

associated model PI due to the variation in BSEKF estimates across

experiments, but it increased accuracy when compared to the survey

truth data.

Figures 8–11 illustrate the calibration results from level turn,

cloverleaf, and TFB techniques. As previously mentioned, these

methods required varying levels of logistical footprints, were limited

in their Mach number domain, and/or required prior knowledge of

Kt. As shown, all methods yielded results that closely followed

survey truth data, with varying levels of bias and PI widths. It is

important to note the data reduction for the level turn and cloverleaf

methods included the enhancements that were developed as part of

the JMOSS algorithm (i.e., AOA and AOS corrections, direct

computations of airspeeds using pressures, and three-dimensional

reference frame rotations), which may have contributed to their

accuracy.

Finally, Table 4 compares effort metrics across all methods tested

during this research. To highlight the true potential in efficiency

from the JMOSS algorithm, only the results from a single

experiment were considered. The time figures were computed by

summing all flight time dedicated to collecting data for each

experiment. The cost figures were directly proportional to a T-38C

flight time at a representative flight-test rate of 11,300 (USD)/h.

Meanwhile, ΔMach captured the difference between the minimum

and maximum Mach numbers modeled by each experiment.

Finally, the mean bias was taken as the average difference between

each method’s results and survey truth data, contained within the

bounds of each method’s Mach number domain, and normalized by

that width (i.e., divided by Δ Mach). As shown, the JMOSS

algorithm was able to produce accurate results with as much as

90% fewer test points, 88% less time/cost, 83% less bias, and 78%

less uncertainty, all while modeling 42% more Mach number

domain.

Fig. 5 Illustration of JMOSS BSEKF output on backward pass.
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Fig. 6 JMOSS results for a single test point.

Fig. 7 JMOSS results when combining all test points.
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Fig. 8 Results from level turn test points.

Fig. 9 Results from cloverleaf test points.
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Fig. 11 Results comparison across all methods.

Fig. 10 Results from tower flyby test points.
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V. Conclusions

This paper has introduced a fully self-contained pressure–airspeed–
altitude hybrid backward-smoothing extended Kalman filter
(BSEKF)-based air data system calibration algorithm with an
accompanying autonomous smoothing spline process rooted in
information theory. As shown in the previous sections, the proposed
algorithmmodeled a larger portion of theMach number domain while
drastically reducing the cost, flight time, mean error, and maximum
width of the 95% prediction intervals around the resulting model.
Additionally, when experimental data from multiple dates and across
varying atmosphere conditions were used, the model proved to have
stable, repeatable results. The Jurado–McGehee online self-survey
algorithm introduced herein provided a fully automated and self-
contained means of establishing an accurate static position error
correction curve for any aircraft with no prior knowledge and minimal
maneuver requirements for observability. The proposed method set
the course for an emerging class of online calibration and dynamic
performance modeling algorithms that not only took advantage of
modern data collection capabilities but also made full use of sensor
fusion technology in order to relax the required experimental
conditions for such modeling. Future work in this area will includes
developing more robust post-BSEKF smoothing techniques beyond
the Akaike spline model (e.g., neural networks), identifying potential
additional sources of information for sensor fusion, and expanding
the concept of sensor-fusion-based online calibration to aircraft
performance and flying qualities.
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