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Abstract— The task of inertial sensor calibration has required
the development of various techniques to take into account the
sources of measurement error coming from such devices. The
calibration of the stochastic errors of these sensors has been
the focus of increasing amount of research in which the method
of reference has been the so-called “Allan variance (AV) slope
method” which, in addition to not having appropriate statistical
properties, requires a subjective input which makes it prone
to mistakes. To overcome this, recent research has started
proposing “automatic” approaches where the parameters of the
probabilistic models underlying the error signals are estimated
by matching functions of the AV or wavelet variance with their
model-implied counterparts. However, given the increased use
of such techniques, there has been no study or clear direction
for practitioners on which approach is optimal for the purpose
of sensor calibration. This article, for the first time, formally
defines the class of estimators based on this technique and puts
forward theoretical and applied results that, comparing with
estimators in this class, suggest the use of the Generalized method
of Wavelet moments (GMWM) as an optimal choice. In addition
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to analytical proofs, experiment-driven Monte Carlo simulations
demonstrated the superior performance of this estimator.
Further analysis of the error signal from a gyroscope was also
provided to further motivate performing such analyses, as real-
world observed error signals may show significant deviation from
manufacturer-provided error models.

Index Terms— Allan variance (AV), autonomous regression
method for AV, generalized method of wavelet moments
(GMWM), inertial measurement unit (IMU), slope method,
stochastic error, Wavelet variance (WV).

I. INTRODUCTION

THE identification of a probabilistic time series model
and the estimation of its relative parameters for the error

signal issued from various sensors, such as inertial sensors,
is a key challenge in many fields of engineering that has led
to a great deal of research being produced. Aside from the
size of the calibration data which can entail computational
burdens for the mentioned estimation tasks, the stochastic
errors of these signals are often complex since they can
be characterized by composite (latent) stochastic processes
where different underlying models contribute to the observed
error signal. Although different approaches exist to perform
estimation for the parameters of these processes, the cur-
rently adopted standard method for modeling the stochastic
error of inertial sensors is the “Allan variance slope method”
(AVSM) [1] that relies on the Allan variance (AV) which
is widely accepted as being a quantity of reference for the
calibration of the stochastic errors issued from (low-cost)
inertial sensors. Indeed, the AVSM relies on the fact that
certain stochastic processes contributing to the overall signal
(such as white noises and random walks) are identifiable based
on the slope of the plot. Based on this property, the AVSM
requires practitioners to 1) make a log-log plot of the empirical
AV of an error signal, 2) detect the regions of the plot
which best represent an assumed model, and 3) estimate the
parameters of the latter by estimating the slope of the AV
within the selected region (based on which model parameters
can be found). This approach is currently widely practiced
in industry and academia making it a method of reference
for inertial sensor calibration. Despite its popularity, however,
the AVSM procedure is lengthy and prone to (human) errors as
well as having been proven to be statistically inconsistent [2],
thereby implying that, being among others subjective in nature,
the resulting parameter estimates can be severely biased and
do not improve as the length of the observed signal increases.
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For the abovementioned reasons (i.e., statistical inconsis-
tency and subjective nature of the AVSM), the literature has
proposed different alternatives that either make this procedure
autonomous or use the AV in a way to deliver consistent esti-
mations (or both). Among these proposals, we can find those
that make use of the linearity of logarithmic transforms of the
AV to apply regression methods to estimate the parameters of
the stochastic models assumed for the observed error signals.
A recent example is given in [3] where a regularized regression
approach is applied to the logarithm of the AV with base 10.
Another approach is based on a linear transformation of the
AV, more specifically the Haar wavelet variance (WV), where
a generalized least square approach inverses the mapping
between the model-implied WV and the empirical WV [4].
These moment-matching techniques belong to the class of
the generalized method of moments estimators (introduced
in [5]) where the considered “moments” are either the AV,
the WV, or functions of one of these quantities. Given the
presence of different moment-matching approaches based on
the WV (AV) in order to automatize the sensor calibration
process, it is important to understand how these approaches
compare both from a theoretical as well as a practical point of
view. Indeed, it would be appropriate to study these methods
so that practitioners have some criteria that would allow them
to choose the approach that best suits their requirements.

For the abovementioned reasons, this article intends to study
the properties of this class of moment-matching approaches
and put forward a proposed optimal moment-matching tech-
nique for inertial sensor calibration. Based on this goal, this
article is organized as follows. In Section II, we summa-
rize the notational convention used throughout this article.
In Section III, we discuss the class of moment-matching
estimators based on (functions of) the WV and formally com-
pare them. Section IV compares calibration parameter estima-
tion results using some existing moment-matching approaches
based on the calibration of an accelerometer and a gyroscope
from a STIM-300 inertial measurement unit (IMU). Finally,
in Section VI, we summarize our findings and conclusions.

II. NOTATIONAL CONVENTION

Conventions
(xt) refers to a sequence of values indexed

by integer t .
xt refers to the tth value of a sequence.
Yt refers to a random variable indexed

by integer t .
yt refers to a realization of Yt indexed

by integer t .
T refers to sample size of random variable Yt .
IR+ refers to the set of positive real numbers.
IR− refers to the set of negative real numbers.
C1(A,B) refers to the set of functions from the set A

to the set B whose first derivatives are
continuous.

‖A‖S denotes the matrix spectral norm.
‖x‖2

A denotes the squared Mahalanobis distance,
i.e., ‖x‖2

A := xT Ax where x ∈ IRq

and A ∈ IRq×q .

‖x‖2 denotes the l2-norm of vector x ∈ IRq ,
i.e., ‖x‖2 := (

∑q
i=1 x2

i )
1/2.

‖A‖S denotes the matrix spectral norm.

Important Notations
� the parameter space.
θ (p × 1) generic parameter vector such that

θ ∈ � ⊂ IRp.
θ0 (p × 1) true parameter vector such that

θ0 ∈ � ⊂ IRp.
Fθ data generating model parameterized by θ .
J J := {

x ∈ N | p ≤ x < log2(T )
}
.

J an element in the set J , i.e., an integer denoting
the the number of scales such that it is at least
the same as the number of parameters but smaller
than log2 (T ).

ν (J × 1) Wavelet variance or Allan variance vector.
ν(θ) (J × 1) Wavelet variance or Allan variance vector

implied by θ assuming that Fθ corresponds to
the true data generating process.

f(·) a known vector-valued function such that
f : IRJ

+ �→ G ⊂ IRJ .
� a positive definite matrix in IRJ×J .
�̂ an estimate of the matrix �.
| · | denotes the absolute value.
A � B we have that A � B := ABAT where A ∈ IRk×d

and B ∈ IRd×d .
Tj number of wavelet coefficients at scale j ∈ N\{0},

Tj := T − 2 j + 1.

III. GENERALIZED METHOD OF WAVELET

FUNCTIONAL MOMENTS

In order to formalize the framework of reference for this
article, we first consider the time series (Xt)t=1,...,T which is
supposedly generated by a composite stochastic process Fθ

delivered by the sum of independent subprocesses. We let
Fθ 0 denote the true data-generating process, which is assumed
known up to the value of θ0. The vector θ0 is therefore the
true parameter value which corresponds to a possible value in
� ⊂ IRp. We let θ denote a generic parameter vector, which
should therefore not be confused with the true parameter θ0.
In order to discuss the estimation of θ0, let us consider the
AV or WV which can be computed on the time series (Xt )
for different (dyadic) scales of decomposition J . For the
purpose of this work, we will, however, consider J ∈ J
scales such that there are at least the same number of scales
as of parameters. With this in mind, we introduce a class of
estimators of θ0 that we define as follows:

θ̂ := argmin
θ∈�

‖f(ν̂) − f(ν(θ))‖2
� (1)

where ν̂ ∈ IRJ
+ and ν(θ) ∈ IRJ

+ denote, respectively, a suitable
estimator of the AV or WV computed on (Xt ) and the
model-based counterpart (i.e., the AV or WV implied by the
assumed model Fθ ). The vector-valued function f(·) is such
that f : IRJ

+ �→ G ⊂ IRJ and is assumed known. Moreover,
� ∈ IRJ×J is a positive definite matrix which, if estimated,
shall be denoted as �̂ (instead of �) in order to emphasize the
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stochastic nature of the matrix. Since the AV is a special case
of the (Haar) WV (see [6]–[8] for details), we choose to call
the class of estimators in (1) as “generalized method of wavelet
functional moments” estimators (GMWFMs). The latter is
quite general and includes, among others, the generalized
method of wavelet moments (GMWM) proposed in [4] or the
autonomous regression method for Allan variance (ARMAV)
of [3]. Indeed, the GMWM corresponds to the choice f(x) = x,
while the ARMAV is based on fi(xi) = log10(xi), i =
1, . . . , J , where fi (·) and xi denote the i th element of f(·)
and x, respectively. In addition, the GMWM and the ARMAV
are based on different but relatively similar choices of the
matrix �.

In this article, we investigate the requirements on the
function f(x) to ensure that the estimator θ̂ is consistent
and asymptotically normally distributed. Moreover, we discuss
whether an optimal choice for f(x) exists. For this purpose,
we need to define a set of assumptions that will be used
in order to investigate these properties. Therefore, let us
study the first assumption regarding injectivity of the function
g(θ) := f(ν(θ)) which can be found in the following.

Assumption A (Injectivity): The functions f(·) and ν(·) are
such that f(·) is injective in IRJ

+ and ν(·) is injective in �.
If this assumption holds, then a direct consequence is

that g(θ) is injective in �. More precisely, the first part of
Assumption A is rather mild since the function f(·) can be
chosen in such a way as to respect this condition. However,
the second part of the assumption can be challenging to prove.
For example, [9] considered the injectivity of the function ν(·)
and provide a series of results allowing to verify this property
for various classes of latent time series models. The latter
demonstrates that the second part of Assumption A would
hold for the class of models considered in [4], with a few
exceptions. For example, if the time series contains a drift
with parameter ω, it is necessary to assume that the sign of ω
is known (since ν(θ) only depends on ω2). A general strategy
to prove whether Assumption A holds for a specific model can
be found in [10] (which is also used in [9]) while we prove
the second requirement of Assumption A (i.e., ν(·) is injective
in �) in Lemma 1 for the general model considered in [3].
The latter model is a composite model made by the sum of a
1) quantization noise with parameter Q2 ∈ IR+, 2) white noise
with parameter σ 2 ∈ IR+, 3) bias instability with parameter
B ∈ IR+, 4) random walk with parameter γ 2 ∈ IR+, and
5) drift with parameter ω ∈ IR+.

Lemma 1: Let

θ := [
Q2 σ 2 B γ 2 ω

] ∈ � ⊂ IR5
+

and let c be a positive constant. Then, the function

ν j (θ) := c

(
3Q2

22 j
+ σ 2

2 j
+ 2 log(2)

π
B2 + γ 22 j

3
+ ω222 j−1

)
is injective in �.

Remark A: The positive constant c is simply related to the
choice of the AV or (Haar) WV: in the case of the former,
we have that c = 1 while for the Haar WV, we have c = (1/2).

Proof: First, we notice that it is sufficient to show that

ν∗(θ) = ν∗(θ∗)

if and only if θ = θ∗, where ν∗(θ) denotes the first five
elements of the vector ν(θ). Moreover, the function ν∗(θ) can
be reparametrized as a function of β defined as

β := [
Q2 σ 2 B2 γ 2 ω2]

where the only difference with θ is that the elements B and
ω are squared. Since the latter elements are positive (the sign
of ω is known and is assumed positive for this proof without
loss of generality), the square function is also injective and
this implies that if the WV is injective for their squares,
by composition of injective functions it is also injective for
the original values. Therefore, it is sufficient to show that

ν∗(β) = ν∗(β∗)

if and only if β = β∗. We start by computing the Jacobian
matrix J(β) which is defined as

J(β) := ∂

∂βT ν∗(β)

= c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

2

1

2

2 log(2)

π

2

3
2

3

16

1

4

2 log(2)

π

4

3
8

3

64

1

8

2 log(2)

π

8

3
32

3

256

1

16

2 log(2)

π

16

3
128

3

1024

1

32

2 log(2)

π

32

3
512

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since J(β) does not depend on β we let J := J(β), we, based
on the mean-value theorem, write

ν∗(β) − ν∗(β∗) = ν∗(β) − [
ν∗(β) + J · (β∗ − β)

]
= J · (β − β∗).

Since we have that

det(J) = c5 84357 log(2)

1024π
> 0

the only solution of the equation

J · (β − β∗) = 0

is β∗ = β, which concludes the proof. �
Having discussed Assumption A which appears to be

reasonable to assume in general (given the different cases
in which it is verified), we now consider the other set of
assumptions that are needed to prove the consistency of the
estimator θ̂ .

Assumption B (Compactness): The set � is compact.
Assumption C (Consistency): For all j ∈ {1, . . . , J },

we have

|ν̂ j − ν j (θ0)| = op(1).

Moreover, if � is estimated by �̂ then we have

‖�̂ − �‖S = op(1)

where, Xn = op(1) means that for all ε > 0 we have that

lim
n→∞ Pr(|Xn| > ε) = 0.
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Assumption D (Continuity): The function g(θ) := f(ν(θ))
is continuous in �.

Assumption B is a common regularity condition which is
typically assumed for most estimation problems or is replaced
by other types of constraints. Its main purpose is to ensure
that certain quantities that we will consider in the proofs will
be bounded in order to ensure convergence. Assumption C
is rather mild, and lower level conditions equivalent to this
assumption can, for example, be found in [11] for the WV
(as well as in [12] under weaker conditions) or by combining
these results with the work of [7] who showed the equivalence
between the AV and WV. Finally, Assumption D requires the
function f(ν(θ)) to be continuous in � which is the case
when both f(·) and ν(·) are continuous within their respective
composition domains. Since the function ν(θ) is continuous in
� for nearly all models of interest (such as those considered
in [9] or the model discussed in [3]), it is sufficient for f(·) to
be continuous in IRJ

+ to satisfy this assumption. Based on these
assumptions, we can state the following consistency result.

Theorem 1: Under Assumptions A to D, we have that

‖θ̂ − θ0‖2 = op(1).

Proof: Let

Q(θ) := ‖g(θ0) − g(θ)‖2
�

where g(θ) is defined in Assumption D. Then, we have

Q(θ) ≤ ‖�‖S‖ g(θ0) − g(θ)‖2
2.

Therefore, Assumption A implies that Q(θ) has a unique
minimum in θ = θ0.

Next, Assumption D directly implies the continuity of the
function Q(θ) in �. Moreover, from the continuous map-
ping theorem together with Assumptions C and D, we have
|ĝ j − g j(θ0)| = op(1) for all j ∈ {1, . . . , J }. Then, following
the same strategy as in [12] (Proposition 3.1.), we obtain:

sup
θ∈�

|Q̂(θ) − Q(θ)| = op(1)

where

Q̂(θ) := ‖f(ν̂) − f(ν(θ))‖2
�̂
.

Therefore, Theorem 2.1 of [13] can be applied to obtain the
consistency of θ̂ , therefore concluding the proof. �

Theorem 1 implies that any GMWFM estimator is con-
sistent under the same conditions needed to ensure the con-
sistency of the GMWM estimator provided that the function
f(·) is both injective (see Assumption A) and continuous (see
Assumption D). Therefore, the requirements on the function
f(·) are rather mild but we shall see that this function has
a more relevant impact on the asymptotic distribution of the
estimator. Before introducing this result, as for the result of
consistency, we first state and discuss relevant assumptions.

Assumption E (Interior and Convex): The vector θ0 is such
that θ0 ∈ Int(�) and � is convex.

Assumption F (Function Differentiability): The function
f(·) is such that f ∈ C1(IRJ

+,G) allowing us to define

F(θ0) := ∂

∂xT
f(x)

∣∣∣∣
x=ν(θ0)

.

Moreover, defining the matrices

�∗[θ0, F] := F(θ0)
T � �

and

A(θ0) := ∂

∂θT
ν(θ)

∣∣∣∣
θ=θ 0

then, the matrix

H[θ0, ν,�, F] := A(θ0)
T � �∗[θ0, F]

exists and is nonsingular.
Assumption G: The estimator ν̂ has the following asymp-

totic distribution:√
TJ (ν̂ − ν(θ0))

D−−−→
T →∞ N (0, V(θ0))

where V(θ0) := limT →∞ cov(
√

TJ ν̂) is a positive-definite
symmetric matrix.

The topological requirements of Assumption E are quite
mild although stronger than necessary. Indeed, the fact that
θ0 is required to be an interior point of the convex space
� is convenient (but not strictly necessary) to ensure that
expansions (such as Taylor expansions) can be made between
θ0 and an arbitrary point in �. Assumption F contains different
requirements but what it basically requires is that the function
f(·) is differentiable in such a way that it can be used to
make Taylor expansions for the purposes of demonstrating
the asymptotic normality of the estimator θ̂ . Based on these
expansions, we obtain expressions that deliver the matrix
H[θ0, ν,�, F] which needs to be positive-definite in order for
the estimator to have an asymptotic variance (and hence define
an asymptotic distribution). Finally, Assumption G is required
for any estimator which makes use of moments (such as the AV
or WV) to deliver asymptotic normality of the estimator itself.
This assumption is verified under few additional conditions
compared to those required for Assumption C, as highlighted
again in [11], [14], and, under weaker conditions, in [12].
Using these assumptions, we obtain the following result.

Theorem 2: Under Assumptions A to G, the estimator θ̂

has the following asymptotic distribution:√
TJ

(
θ̂ − θ0

) D−−−→
T →∞

N (0,�[θ0, ν,�, F])

where

�[θ0, ν,�, F] := B[θ0, ν,�, F] � V(θ0)

and

B[θ0, ν,�, F] := H[θ0, ν,�, F]−1A(θ0)
T �∗[θ0, F].

Proof: Let �(T ) := {x ∈ IRp | ‖x − θ0‖2 ≤ d(T )},
defining a nonstochastic set, where d(T ) = o(1). Moreover,
we also define �∗(T ) := � ∩ �(T ). Since θ̂ is consistent
by Theorem 1 (based on Assumptions A to D), there exists a
function d(T ) such that

θ̂ := argmin
θ∈�

‖f(ν̂) − f(ν(θ))‖2
�

= argmin
θ∈�∗(T )

‖f(ν̂) − f(ν(θ))‖2
� + op(1). (2)
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Within the set �∗(T ), which shrinks toward θ0 as the sample
size T increases, we can expand f(ν̂) and f(ν(θ)) around ν(θ0)
using a Taylor expansion to obtain

f(ν̂) = f(ν(θ0)) + F(θ0)(ν̂ − ν(θ0)) + op(1)

f(ν(θ)) = f(ν(θ0)) + F(θ0)(ν(θ) − ν(θ0)) + o(1).

Therefore, by combining this result with (2), we obtain

θ̂ = argmin
θ∈�∗(T )

‖F(θ0)(ν̂ − ν(θ))‖2
� + op(1)

= argmin
θ∈�∗(T )

‖ν̂ − ν(θ)‖2
�∗ + op(1) (3)

where, similar to the definition of Assumption F,

�∗ := �∗[θ0, F] = F(θ0)
T � �.

Next, we consider the following approximation of θ̂ :
θ̃ := argmin

θ∈�

‖ν̂ − ν(θ)‖2
�∗ .

Proposition 2.2 of [12] implies, under the current assumption
framework, that√

TJ
(
θ̃ − θ0

) D−−−→
T →∞ N (0,�[θ0, ν,�, F]).

Since θ̂ = θ̃ +op(1), a direct application of Slutsky’s theorem
allows to conclude that the abovementioned results remains
true for θ̂ and we obtain√

TJ
(
θ̂ − θ0

) D−−−→
T →∞ N (0,�[θ0, ν,�, F])

which concludes the proof. �
An implication of this result (made evident in particular

from (3) in the proof) is the fact that, no matter which choice
is made for the function f(·) and the matrix � (provided that
they satisfy the previously mentioned assumptions), we can
define a matrix �∗ (that depends upon f(·) and �) such that
we can express the estimator as

θ̂ := argmin
θ∈�

‖ν̂ − ν(θ)‖2
�∗ . (4)

Therefore, as long as the matrix �∗ := �∗[θ0, F] is positive
definite, the estimator θ̂ is asymptotically normally distributed
under the abovementioned assumptions, and the only aspect
that is affected by the change of �∗ is the efficiency of
the resulting estimator. Consequently, the choice of a specific
function f(·) (which respects the required properties) only
contributes to modifying the weighting matrix �∗, therefore
delivering approximately the same results for any such func-
tion f(·). The weighting matrix �∗ is therefore crucial to the
efficiency of the estimator θ̂ . As shown in the following corol-
lary, the optimal choice (in terms of asymptotic efficiency) of
�∗ is the inverse of F(θ0) � V(θ0). Although the true V(θ0)
is unknown in practice, it can be consistently estimated by
the estimator proposed in [15] or with the approach discussed
in [12]. Moreover, the corollary of Theorem 2 shows how
asymptotically optimal estimators can be constructed for the
GMWFM.

Corollary 1: Under Assumptions A to G (i.e., the same
conditions of Theorem 2), the estimator θ̂ based on the

function f(·) and the matrix �◦ := [F(θ0) � V(θ0)]−1 is
asymptotically efficient in the class of GMWFM estimators.

Proof: Under our assumptions, it is easy to verify that
the asymptotic covariance matrix of θ̂ is given by

�[θ0, ν,�◦, F] = [
A(θ0)

T � V(θ0)
−1

]−1
.

We proceed by demonstrating that the difference between the
asymptotic covariance matrix in Theorem 2 and the above-
mentioned covariance matrix leads to a positive semidefinite
matrix. Following Section 5.2 in [13], it is easy to show that:

�[θ0, ν,�, F] − �[θ0, ν,�◦, F]
= H[θ0, ν,�, F]−1 � E

[
WWT

]
where

W := A(θ0)
T �∗[θ0, F]Z

−H[θ0, ν,�, F]�[θ0, ν,�◦, F]A(θ0)
T F(θ0)

T �◦Z

and Z is a random vector such that

E
[
ZZT

] = F(θ0)V(θ0)F(θ0)
T = (�◦)−1.

The result follows since E[WWT ] is positive semidefinite,
which concludes the proof. �

Corollary 1 shows that, under suitable conditions, any
estimator belonging to the class of GMWFM estimators can
be asymptotically optimal provided that it is based on the
function f(·) and the matrix �◦ := [F(θ0)V(θ0)F(θ0)

T ]−1.
This implies that there exists an infinite number of possible
efficient estimators (based on different functions f(·) and
matrix �◦) leading to the same optimal asymptotic covariance
matrix [A(θ0)

T � V(θ0)
−1]−1. In the case where f(x) = x,

the matrix �◦ has the simplest expression given by �◦ =
V(θ0)

−1 since F(θ0) = I, therefore also suggesting that
its (consistent) estimation is more straightforward in prac-
tice. The choice of the function f(x) = x presents several
other advantages compared to possible alternative choices.
For example, this function allows the estimator to be solved
analytically for various commonly used models. This is of
particular importance for inertial sensor calibration as most
models considered in this field allow for such a closed-form
solution. Indeed, suppose that there exists a matrix X that
does not depend on θ such that ν(θ) can be expressed as
ν(θ) = X h(θ) for all θ ∈ �, where h(·) is an injective
vector-valued function such that h : � �→ H ⊂ IRp. This is,
for example, the case for the model considered in Lemma 1.
Indeed, denoting a := 2 log(2)/π , the function ν(θ) can be
expressed as follows:

ν(θ) = c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

22

1

21
a

21

3
21

3

24

1

22
a

22

3
23

...
...

...
...

...

3

22J

1

2J
a

2J

3
22J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

⎡⎢⎢⎢⎢⎣
Q2

σ 2

B2

γ 2

ω2

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

h(θ)

. (5)
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Hence, taking the parameter vector defined in Lemma 1,
the vector-valued function h(θ) is the identity for all elements
except for B and ω for which it is the square function. Since
all parameters (are assumed to) belong to IR+, we have that
the function h(θ) is injective which, in general, allows us to
write

θ̂ := argmin
θ∈�

‖ν̂ − ν(θ)‖2
� = h−1(ϑ̂)

where

ϑ̂ := argmin
ϑ∈H

‖ν̂ − X ϑ‖2
�

and where we let ϑ := h(θ). Moreover, since the function
‖ν̂ − X ϑ‖2

� is differentiable in ϑ , we have

ϑ̂ := argmin
ϑ∈H

‖ν̂ − X ϑ‖2
� = argzero

ϑ∈H
XT �(ν̂ − Xϑ).

Therefore, we have that

XT �Xϑ̂ = XT �ν̂

which corresponds to the standard (weighted) least-squares
equations. Since � is invertible, X is full (column) rank, and
XT �X is nonsingular, thus we obtain

ϑ̂ = (
XT �X

)−1
XT �ν̂ (6)

which provides a simple plug-in estimator for θ0 defined as

θ̂ = h−1
[(

XT �X
)−1

XT �ν̂
]
. (7)

The abovementioned closed-form solution is therefore a first
advantage of choosing f(x) = x. Moreover, there are a few
practical advantages stemming from this setting: the first of
which is the fact that, given a closed form solution for this
class of models, no optimization is required to compute the
estimates, therefore delivering computationally fast solutions.
In addition, even if the model of interest contains a subset
of this class of models, this closed-form solution can be
used as an approximate method to quickly obtain “good”
starting values that can increase the computational efficiency
of the optimization procedure required to solve (1). Finally,
the abovementioned form allows to obtain the exact form
of the asymptotic variance of ϑ̂ up to the value of V(θ0)
(i.e., the asymptotic variance of ν̂) which, using the delta
method, would allow us to obtain the exact variance of θ̂ for
this class of models. Indeed, Lemma 2 shows that asymptotic
properties of θ̂ discussed in Theorems 1 and 2 are in this case
satisfied under nearly no assumptions.

Lemma 2: Consider the estimator θ̂ defined in (1) with the
choice f(x) = x and the model studied in Lemma 1. Then,
the estimator θ̂ is such that ‖θ̂ − θ0‖2 = op(1). In addition,
if θ0 ∈ Int(�), the asymptotic distribution of θ̂ is given by√

TJ
(
θ̂ − θ0

) D−−−→
T →∞ N (0, [G(θ0)M] � V(θ0))

where

V(θ0) := lim
T →∞

cov(
√

TJ ν̂)

M := (
XT �X

)−1
XT �

G(θ0) :=
(

∂

∂θT h(θ)

∣∣∣∣
θ=θ0

)−1

.

Proof: Using Theorem 2.1. of [16], we have√
TJ (ν̂ − ν(θ0))

D−−−→
T →∞

N (0, V(θ0)). (8)

Therefore, using (5), we have

ϑ̂ = (
XT �X

)−1
XT �ν̂

P−→ h(θ0)

where
P−→ is used to denote “convergence in probability.”

By the continuous mapping theorem, we obtain

θ̂ = h−1(ϑ̂) P−→ h−1[h(θ0)] = θ0

which verifies the first statement of Lemma 2. Using (6)
and (8), we directly obtain√

TJ
(
ϑ̂ − h(θ0)

) D−−−→
T →∞

N (0, M � V(θ0)).

In addition, we have the following through a Taylor expansion:√
TJ

(
ϑ̂ − h(θ0)

)
= √

TJ
(
h
(
θ̂
) − h(θ0)

)
= √

TJ
(
h(θ0) + G(θ0)

−1(θ̂ − θ0
) − h(θ0)

) + op(1)

which allows, using Slutsky’s theorem, to verify the second
statement of Lemma 2 and concludes the proof. �

Remark B: In Lemma 2, � is supposedly a known quantity
but it could straightforwardly be replaced by a consistent esti-
mator (see Assumption C). The requirement that θ0 lies inside
the parameter space allows to make a first-order approximation
of h(θ). In the case there is no interest in estimating the bias
instability parameter B and the drift parameter ω, this require-
ment can be relaxed as h(θ) is the identity function [see (5)].

Aside from the computational advantage of using the func-
tion f(x) = x in (1) for the class of models for which ν(θ)
can be expressed as Xh(θ) (or as a “good” starting value for
other models), there is another potential advantage of using the
identity function for the purposes of estimation which relates
to their bias. Indeed, the standard estimators of AV or WV
are unbiased (see, e.g., [11]), meaning that E[ν̂] = ν(θ0) and
implying that E[ϑ̂] = h(θ0) based on (6). A first implication
of these properties is that, aside from consistency, it is possible
to show that the estimates of most of the parameters in models
whose theoretical WV can be expressed as Xh(θ) are unbiased
(i.e., when hi (·) is the identity or a linear function). However,
if the theoretical WV cannot be expressed in the latter form,
formal proofs to determine the finite sample behavior of the
estimators defined in (1) may be hard to derive. Nevertheless,
an intuitive argument would support the employment of the
function f(x) = x since it directly makes use of unbiased
estimators of the WV to match their theoretical counterpart
(which is a desirable property in order to achieve unbiasedness
with respect to the parameter of interest θ0).

To better highlight the concepts behind the abovementioned
reasoning, we compare the following two asymptotically
equivalent estimators:

1) θ̂ based on the choice of function f(x) = x and a
(nonrandom) weight matrix �1

2) θ̃ based on another choice of function, such that
E[f(ν̂)] = f(E[ν̂]) and a (nonrandom) weight matrix �2.
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We then consider the expected value of the objective function
of the first estimator θ̂

E
[‖ν̂ − ν(θ)‖2

�1

] = ‖E[ν̂ − ν(θ)]‖2
�1

+ tr(�1 var(ν̂)).

Since the second term of the abovementioned equation does
not depend on θ , we let b1 := tr(�1 var(ν̂)) and we can write

E
[‖ν̂ − ν(θ)‖2

�1

] = ‖ν(θ0) − ν(θ)‖2
�1

+ b1

since E[ν̂] = ν(θ0). Therefore, this function is unbiased in the
sense that it is minimized at the true value θ0.

Following the argument in [17], it is therefore expected
that the bias of this estimator will be large if bias in the
objective function of the corresponding estimator is large.
Next, we consider the objective function of the second esti-
mator and, recalling that g(θ) := f(ν(θ)) as defined in
Assumption D, we define �(θ0) := E[f(ν̂)] − g(θ0) and
b2 := tr(�2 var(f(ν̂))). Using these definitions, we obtain

E
[‖f(ν̂) − g(θ)‖2

�2

]
= ‖E

[
f(ν̂) − g(θ)

]‖2
�2

+ b2

= ‖g(θ0) + �(θ0) − g(θ)‖2
�2

+ b2.

Moreover, by applying the mean value theorem, it is possible
to assess the order of �(θ0)

�(θ0) = E[f(ν̂)] − g(θ0)

= E[g(θ0) + F
(
ν(θ∗)

)
(ν̂ − ν(θ0))] − g(θ0)

= T
− 1

2
J E[√TJ F

(
ν(θ∗)

)
(ν̂ − ν(θ0))] = O

(
T

− 1
2

J

)
where θ∗ ∈ �, ν(θ∗) is on the line connecting ν(θ0) and ν̂,
and the term

√
TJ F(ν(θ∗))F(ν(θ∗))(ν̂−ν(θ0)) is Op(1) by the

continuous mapping theorem and Assumption C. Therefore,
we have

argmin
θ∈�

E
[‖f(ν̂) − g(θ)‖2

�2

]
= argmin

θ∈�

‖g(θ0) + �(θ0) − g(θ)‖2
�2

implying that bias of the objective function is of order O(T −1
J )

and, consequently, the bias of θ̃ is also of order O(T −1/2
J ). As a

result, we expect estimators based on the choice f(x) = x
to have relatively small biases compared to other choices of
f(x). An important example is when f(x) is a convex/concave
function. More specifically, using Jensen’s inequality, we have
the following:{

E[f(ν̂)] > f(E[ν̂]), if f is strictly convex

E[f(ν̂)] < f(E[ν̂]), if f is strictly concave.
(9)

Having delivered different theoretical results and arguments
comparing the use of different functions f(·) for the purpose
of parameter estimation as defined in (1), Section IV performs
some simulation studies where, using different models for the
stochastic error of the sensors, we compare the performance
of different GMWFM estimators.

TABLE I

TRUE PARAMETER VALUES FOR MONTE CARLO SIMULATIONS

IV. SIMULATION RESULTS

In this section, we compare the estimation performance
(in terms of bias and variance) across two GMWFM estima-
tors, namely, the GMWM and ARMAV, as well as the standard
AVSM as a reference. To carry out this comparison, we make
use of the parameter estimates (based on the GMWM) of the
stochastic processes identified from the real calibration data
coming from the X-axis accelerometer and X-axis gyroscope
of a STIM-300 IMU [18]. Hence, the parameter estimates
on this real calibration data were considered as being the
true parameter values for simulation purposes and their values
(along with the respective models) are presented in Table I.
For each sensor (with respective stochastic models), two
Monte Carlo simulation settings were considered based on two
different sample sizes (long and short) and with sampling fre-
quency fixed at 250 Hz. In the “long” signal setting, the sample
size was set to T = 6.3 × 106, corresponding to 7 h of
calibration data, while in the “short” signal setting, the sample
size was set to T = 2.5 × 106, corresponding to 2.5 h of
calibration data. Each estimation was repeated 3000 times, and
the empirical distributions of the three estimators are presented
in Fig. 1.

As shown in Fig. 1, it would appear that the GMWM
approach delivers the best overall performances in terms
of bias and dispersion, whereas the ARMAV and AVSM
approaches have alternating performances according to the
parameter of interest. When comparing the different lengths
of the signals (i.e., long and short settings), we can observe
that the bias and variance of all GMWFM estimators appear
to marginally improve as confirmed in Fig. 2 that summarizes
the overall estimation performance of each approach in terms
of root mean square error (RMSE). From Figs. 1 and 2,
the GMWM displays the best performance overall (i.e., lower
RMSE) across all parameters regardless of sample length.
In contrast, AVSM tends to exhibit larger RMSE, especially
when estimating the parameter of the quantization noise (Q).
In the accelerometer simulations, the ARMAV remains close to
the performance of the GMWM while, in the gyroscope simu-
lations, the ARMAV shows similar performance to the AVSM
when estimating the white noise parameter (σ ), while all
three approaches perform similarly when estimating random
walk (γ).

The simulation results in this section, therefore, seem to
confirm the conclusions made in the conclusions made in
Section III based on the developed theoretical results. Indeed,
it would appear that the choice of the function f(x) = x would
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Fig. 1. Empirical distribution of the estimations of the GMWM, ARMAV, and AVSM approaches for the parameters of the stochastic error of an accelerometer
and a gyroscope for signal lengths of T = 2.5 × 106 (top row) and T = 6.3 × 106 (bottom row), respectively.

Fig. 2. Comparison of estimated root mean squared error between GMWM,
ARMAV, and AVSM approaches for the parameters of the stochastic error of
an accelerometer and a gyroscope for signal lengths of T = 2.5 × 106 (top
row) and T = 6.3 × 106 (bottom row), respectively.

be the optimal choice when considering a GMWFM estimator
for (automatic) sensor calibration.

V. REAL-WORLD APPLICATION

Following the establishment of GMWM as the optimal
moment-matching technique for inertial sensor calibration,
we demonstrate in this section the necessity and benefits
of performing such calibration, even when rather extensive
calibration information is provided by the sensor manufacturer.
To this end, we analyze 3.5 h of static data collected on a
Navchip IMU [19] using GMWM and compare the resulting
model with that suggested by the manufacturer. Another
example with more detailed discussions can be found in [20].

Fig. 3. Comparison of the fitness of models estimated by GMWM and
provided in the datasheet for the gyroscope inside Navchip IMU.

Fig. 4. Decomposition of the model suggested by GMWM in terms of WV
for the gyroscope inside Navchip IMU.

Fig. 3 shows the empirical WVs computed from the data,
resulted from the error model provided by the manufacturer
in the datasheet, and the one from the error model estimated
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by GMWM. While the model estimated by GMWM closely
matches the collected data in terms of WV, the model sug-
gested in the datasheet is far from them and too optimist
at most scales. The model estimated by the GMWM is
composed of quantization noise, white noise, two first-order
Gauss–Markov processes, random walk, and drift. Fig. 4
shows the decomposition of the implied WV by each of these
models, revealing the important contribution of all of them.

VI. CONCLUSION

This article discussed the properties and performance of
a general class of estimators denoted as GMWFM. Being
based on moment-matching techniques through the use of
different functions of the WV, these estimators put forward
different approaches to perform (automatic) sensor stochastic
calibration. Given the variety of proposed functions that build
this class of estimators, this article analyzed and proved the
properties of such estimators, thereby suggesting that the
optimal estimator in this class is the one based on the identity
function which corresponds to the GMWM. These conclusions
are supported by the simulation study which consequently
suggests that the GMWM should be the preferred estimator
among the GMWFM estimators for stochastic calibration of
inertial sensors.
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