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Abstract

This research proposes a novel, autonomous, regression-based methodology
for Allan variance analysis of inertial measurement unit (IMU) sensors. Cur-
rent methods for Allan variance analysis have been rooted in the human-based
interpretation of linear trends, referred to as the slope method. The slope
method is so prolific; it is referenced among electrical and electronics engi-
neering standards for IMU error analysis. However, the graphical nature and
visual-inspection–based use of the method limit its ability to be programmed as a
generalized algorithm, which hinders the autonomy desired in modern-day nav-
igation computations. Using nonlinear regression with a ridge-regression initial
guess, the proposed method is shown to produce comparable results to the gold
standard slope method when using standard-length data collections and out-
performs the slope method when the amount of available data is limited. This
development directly enables accurate navigation solutions for all vehicles in
land, air, sea, and space operations.

1 INTRODUCTION

Inertial navigation systems are used to track the location
and velocity of an object and are relied upon commonly
by many vehicles as a means of establishing orientation
in open spaces such as ships in the ocean and airplanes
in the sky. However, the availability of an accurate inertial
navigation solution depends on the proper calibration of
the deterministic and stochastic errors associated with the
accelerometers and gyroscopes that compose the inertial
measurement unit (IMU). Without proper quantification
of their deterministic and stochastic errors, the solutions
rendered by the IMU-based upon accelerometer and gyro-
scope measurements are subject to drift and are, at best,
erroneous, and at worst, provide fatal navigation informa-
tion. As such, a considerable amount of time and energy
has been invested in the understanding and modeling of
the various sources of noise that affect the components
of the IMU. Adequate modeling of inertial sensor errors

begins with an understanding of the physical processes
from which deterministic and stochastic errors arise. In
general, any given sensor output signal can be written in
the following form:

yk = Mxk + 𝝐k, (1)

where yk is the measured output signal, xk is the true sig-
nal, M is a linear operator on xk, and 𝝐k is an additive,
possibly nonlinear signal composed of a combination of
stochastic and deterministic errors that vary with sensor
type. For inertial sensors, the majority of existing research
adapts a version of (1) to both accelerometers and gyro-
scopes by providing specific forms of M and further refin-
ing the deterministic components and stochastic processes
governing 𝝐k.

Titterton1 provides general error models for gyroscopes
and accelerometers in order to describe a wide array of
deterministic and stochastic errors. For gyroscopes, the
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relationship between true (𝜔x) and measured (𝜔̃x) angular
rate for a single axis x is given by the following:

𝜔̃x = (1 + Sx)𝜔x + M𝑦𝜔𝑦 + Mz𝜔z + B𝑓x

+Bgxax + Bgzaz + Baxzaxaz + 𝜂x,
(2)

where Sx is the x-axis scale factor, My and Mz are cross
coupling coefficients, Bfx is a constant x-axis bias (non
g-sensitive), Bgx and Bgz are g-sensitive bias coefficients
along the input and spin axes, Baxz is the anisoelastic bias
coefficient, and 𝜂x is zero-mean additive white Gaussian
noise. It is important to note that the previously discussed
terms may be deterministic or stochastic in nature. Most
often, such terms are modeled as correlated stochastic
processes that eventually motivate the need for a reli-
able stochastic characterization method such as the Allan
variance.2 The expanded form in (2) can be applied to the
remaining two axes and expressed in terms of (1) by letting

y =

[
𝜔̃x
𝜔̃𝑦

𝜔̃z

]
x =

[
𝜔x
𝜔𝑦

𝜔z

]
, (3)

M =

[ 1 + Sx M𝑦 Mz
Mx 1 + S𝑦 Mz
Mx M𝑦 1 + Sz

]
, (4)

𝝐 =
⎡⎢⎢⎣

B𝑓x + Bgxax + Bgzaz + Bgxzaxz + 𝜂x
B𝑓𝑦 + Bg𝑦a𝑦 + Bgxax + Bg𝑦xa𝑦x + 𝜂𝑦

B𝑓z + Bgzaz + Bg𝑦a𝑦 + Bgz𝑦az𝑦 + 𝜂z

⎤⎥⎥⎦ . (5)

Similarly,1 Titterton and Weston also describe a general
error model for accelerometers in terms of the relation
between true (ax) and measured (ãx) acceleration for a
single axis x as follows:

ãx = (1 + Sx)ax + M𝑦a𝑦 + Mzaz + B𝑓 + Bvaxa𝑦 + 𝜂x, (6)

where Sx is the x-axis scale factor, My and Mz are cross cou-
pling coefficients, Bf is a constant measurement bias, Bv is
the vibro-pendulus error coefficient, and 𝜂x is zero-mean
additive white Gaussian noise. Again, (6) can be expressed
using the form in (1) by letting

y =

[ ãx
ã𝑦

ãz

]
x =

[ ax
a𝑦

az

]
, (7)

M =

[ 1 + Sx M𝑦 Mz
Mx 1 + S𝑦 Mz
Mx M𝑦 1 + Sz

]
, (8)

𝝐 =
⎡⎢⎢⎣

B𝑓 + Bvaxa𝑦 + 𝜂x
B𝑓 + Bva𝑦az + 𝜂𝑦

B𝑓 + Bvaza𝑦 + 𝜂z

⎤⎥⎥⎦ . (9)

Subtle differences in M and 𝝐 are found throughout liter-
ature based on the technology used in sensor development
(ie, mechanical and ring laser). Although such differences
affect the specific set of parameters found in M, in gen-
eral, all models for gyroscopes and accelerometers can be
expressed as an adaptation of (1), with 𝝐 composed of a
common mixture of deterministic and stochastic terms.
Focusing on such terms, Kirkko-Jaakkola et al3 use a form
similar to (1) and describe three types of stochastic gyro-
scopic errors in 𝝐 as “constant bias, uncorrelated white
noise, and 1∕f (flicker) noise.” Similar terms appear along
with additional sources of error in Hou,4 where a common
set of five error sources are modeled using the “Allan vari-
ance slope method.”2,5,6 Although many stochastic mod-
eling and calibration methods have been developed, the
“Allan variance slope method” is commonly used in the
navigation community and is listed as the method of
choice in IMU error analysis standards.7 As such, this
research focuses on improving the mathematical meth-
ods for autonomously analyzing Allan variance data in the
context of IMU calibration.

2 ALLAN VARIANCE

Having established the importance of properly model-
ing the sources of noise in 𝝐, we now turn to the most
commonly used method for doing so found in litera-
ture, the Allan variance.2 It is important to note that
although common, the Allan variance is not the only exist-
ing method of IMU characterization. Other methods based
on power spectral density (PSD) and autocorrelation func-
tion (ACF),4,5 as well as wavelet-based methods,8-10 are
often used when analysis of complex signals is inadequate
with the Allan variance (eg, when the signal is composed
of more than one latent correlated noise process). Never-
theless, the Allan variance was originally developed for
the analysis of error sources in atomic clocks. Later, it was
found useful for identifying error sources in accelerome-
ters and gyroscopes using a “slope method” for analyzing
the Allan variance measurements. Such use of the Allan
variance in IMU modeling is so prolific across literature
that it was compiled into an Institute of Electrical and Elec-
tronics Engineers (IEEE) standard.7 In general, the Allan
variance, 𝜎2

a(𝜏), of a continuous time signal, Ω(t), is a func-
tion of a quantity called averaging time, 𝜏, and is given by
the following:

𝜎2
a(𝜏) =

1
2(N − 2n)

N−2n∑
k=1

[
Ω̄k+1(𝜏) − Ω̄k(𝜏)

]2
, (10)
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TABLE 1 Summary of Allan deviation slopes for common noise processes in IMU calibration

Relation to Graphical ID
Error Source Symbol PSD Slope 𝝉 at desired 𝝈 Coefficient Unitsa

Quantization 𝜎q 𝜎a(𝜏) = 𝜎q
√

3𝜏−1 −1
√

3 (deg) or (m/s)
Random Walk 𝜎rw 𝜎a(𝜏) = 𝜎rw𝜏

−1/2 −1∕2 1 (deg/
√

hr) or (m/s/
√

hr)

Bias Instability 𝜎b 𝜎a(𝜏) = 𝜎b

√
2 log(2)

𝜋
𝜏0 0 – (deg/hr) or (m/s/hr)

Rate Random Walk 𝜎rrw 𝜎a(𝜏) = 𝜎rrw
1√
3
𝜏1∕2 1∕2 3 (deg/hr/

√
hr) or (m/s/hr/

√
hr)

Rate Ramp 𝜎rr 𝜎a(𝜏) = 𝜎rr
1√
2
𝜏1 1

√
2 (deg/hr/hr) or (m/s/hr/hr)

a Units result from 𝜎(𝜏) measured in deg/h or m/s/h and 𝜏 measured in hours.

n = 𝜏

Δt
, (11)

where N is the total number of samples in the discretized
signal, Δt is the sampling period, and

Ω̄k(𝜏) =
1
𝜏 ∫

tk+𝜏

tk

Ω(t)dt, Δt ≤ 𝜏 ≤ NΔt∕2. (12)

Essentially, (10) divides the sampled signal into clus-
ters, Ω̄k(𝜏), averaged over a duration, 𝜏, and computes
the variance among groups as a function of varying 𝜏.
It is important to note the form of (10) is referred to as
“non-overlapping,” since the clusters Ω̄k(𝜏) do not overlap
across time. Additionally, since each Allan variance point
is computed from a finite set of samples per cluster, a per-
cent error was derived in Papoulis and Pillai11 and is given
by the following:

𝛿a = 1√
2
(

N
n
− 1

) . (13)

The Allan variance can then be equated to the PSD of the
input signal using the following:

𝜎2(𝜏) = 4∫
∞

0
SΩ( 𝑓 )

sin4(𝜋𝑓𝜏)
(𝜋𝑓𝜏)2 d𝑓, (14)

where f is frequency and SΩ(f) is the PSD of Ω(t). The
relationship illustrated in (14) is then used in Hou4 and
El-Sheimy et al5 to exploit the properties of five key error
sources: quantization, velocity/angle random walk, bias
instability, acceleration/angular rate random walk, and
rate ramp. Each of the five sources of error are system-
atically identified from an Allan variance plot of sensor
(accelerometer or gyroscope) data using the slopes of the
relationship between the PSD of each error source and its
corresponding Allan variance formula. This relationship is
explored in the following sections in order to develop an
understanding of the slope method.

2.1 Slope method
This section describes the prolific slope method of identify-
ing the five aforementioned sources of accelerometer and
gyroscope error using Allan variance analysis. As shown
below, this method exploits the relationship between an
error source's PSD and its corresponding Allan variance
formula in a graphical context, whereby the slope of the
Allan variance versus 𝜏 graph is visually analyzed in order
to extract the necessary information to estimate error.
Although this method is simple and generally accurate, it
suffers from two main limitations. First, it is difficult to
automate since it is rooted in human visual inspection of
an Allan variance versus 𝜏 graph. As such, it requires com-
plex logical programming or human intervention in the
presence of nonstandard conditions (eg, missing sources
of noise). Additionally, when the length of sensor data is
incomplete (ie, not long enough to capture the underlying
noise processes), the resulting Allan variance curve tends
to become much more variable across data collections as 𝜏
increases. Such variability results in Allan variance slope
behavior that is difficult to predict, making automated
slope detection unreliable. Table 1 summarizes the key
components of the slope method, while Figures 1 and 2
illustrate the process.

2.1.1 Quantization error
Quantization is defined as the act of sampling an ana-
log signal into discrete levels of size Δ during the
analog-to-digital conversion process. The errors (differ-
ences between the analog signal and the digitized sig-
nal) caused by such quantization can be characterized as
additive noise,7,12 which is uniformly distributed between
−Δ∕2 and Δ∕2. 7 Analyzing the relationship between the
PSD function and the Allan deviation, 𝜎a(𝜏), of a signal
composed only of quantization noise4 gives the following:

𝜎a(𝜏) =
𝜎q
√

3
𝜏

= 𝜎q
√

3𝜏−1. (15)
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FIGURE 1 Illustration of Allan variance slope method for quantization noise [Color figure can be viewed at wileyonlinelibrary.com and
www.ion.org]

Next, taking the common logarithm of both sides in (15)
yields the following:

log10(𝜎a(𝜏)) = log10

(
𝜎q
√

3𝜏−1
)

(16)

= −log10(𝜏) + log10(𝜎q) + log10

(√
3
)
, (17)

which implies 𝜎q can be identified in an Allan deviation
curve by finding a −1 slope when plotting log10(𝜎a(𝜏))
against log10(𝜏). Additionally, letting 𝜏 =

√
3 in (17) solves

the equation for 𝜎q, which means if the−1 slope line is pro-
jected to 𝜏 =

√
3, the value of 𝜎a(𝜏) at that point will equal

𝜎q. This process is illustrated in Figure 1 and summarized
in Table 1.

2.1.2 Angle/velocity random walk
As indicated by its name, angle or velocity random walk
is a random walk process observed in the angle or velocity
signal output of an inertial sensor. In terms of (2) or (6),
angle/velocity random walk arises from integrating 𝜂x in

𝜔̃x or ãx. The relationship between the Allan deviation and
the PSD for a signal of this type is given by the following:

𝜎a(𝜏) =
𝜎rw√
𝜏
= 𝜎rw𝜏

−1∕2. (18)

Repeating the process followed for quantization noise
yields the following:

log10(𝜎a(𝜏)) = log10(𝜎rw𝜏
−1∕2) (19)

= −1
2

log10(𝜏) + log10(𝜎rw), (20)

which implies 𝜎rw can be identified in an Allan deviation
curve by finding a −1∕2 slope when plotting log10(𝜎a(𝜏))
against log10(𝜏). Letting 𝜏 = 1 in (20) solves the equation
for 𝜎rw, which means if the −1∕2 slope line is projected to
𝜏 = 1, the value of 𝜎a(𝜏) at that point will equal 𝜎rw.

2.1.3 Bias instability
Bias instability, sometimes referred to ironically as bias sta-
bility, refers to the tendency of an inertial sensor's constant
bias (Bf in (2) or (6)) to change or drift during use. The most

http://wileyonlinelibrary.com
www.ion.org
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FIGURE 2 Illustration of Allan variance slope method for common stochastic noise components [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

accurate description of the stochastic process behind this
drift is flicker (or 1∕f) noise as shown by Kirkko-Jaakkola
et al.3 However, due to complications in the modeling of
flicker noise in common navigation estimation algorithms,
such as a Kalman filter,13 this process is often approxi-
mated by a first-order Gauss-Markov process.7,(figure C.6), 14

Following the slope method process yields the following:

𝜎a(𝜏) = 𝜎b

√
2 log(2)

𝜋
= 𝜎b

√
2 log(2)

𝜋
𝜏0, (21)

log10(𝜎a(𝜏)) = 0log10(𝜏) + log10(𝜎b) + log10

(√
2 log(2)

𝜋

)
.

(22)

which indicates there is no relation to 𝜏 in (21). That is, the
flicker noise coefficient can be identified in an Allan devi-
ation curve by finding a 0 slope when plotting log10(𝜎a(𝜏))
against log10(𝜏). Additionally, (22) implies the value of
𝜎a(𝜏) at that point should be scaled by

√
2 log(2)∕𝜋 to solve

for 𝜎b.

2.1.4 Acceleration/angular rate random
walk
In contrast to angle/velocity random walk, rate random
walk refers to a random walk process observed in the iner-
tial sensor's rate signal (acceleration or angular rate). In
terms of (2) or (6), rate random walk arises from integrat-
ing white noise found in ̇̃𝜔x or ̇̃ax. Again, the relationship
between the Allan deviation and the PSD for a signal of
this type yields the following:

𝜎a(𝜏) = 𝜎rrw

√
𝜏

3
= 𝜎rrw

1√
3
𝜏1∕2, (23)

log10(𝜎a(𝜏)) =
1
2

log10(𝜏) + log10(𝜎rrw) −
1
2

log10(3), (24)

which implies 𝜎rrw can be identified in an Allan deviation
curve by finding a +1∕2 slope when plotting log10(𝜎a(𝜏))
against log10(𝜏). Letting 𝜏 = 3 in (24) solves the equation
for 𝜎rrw, which means if the +1∕2 slope line is projected to
𝜏 = 3, the value of 𝜎a(𝜏) at that point will equal 𝜎rrw.

http://wileyonlinelibrary.com
www.ion.org
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2.1.5 Rate ramp
Finally, rate ramp refers to the deterministic, linear, and
usually long-term increase of the inertial sensor's rate sig-
nal output. In terms of (2) or (6), rate random walk arises
when Bfx or Bf linearly changes over time at a deterministic
(eg, nonstochastic but unknown) rate. The slope method
then yields the following:

𝜎a(𝜏) = 𝜎rr
𝜏1√

2
, (25)

log10(𝜎(𝜏)) = log10(𝜏) + log10(𝜎rr) − log10(
√

2), (26)

which implies 𝜎rr can be identified in an Allan deviation
curve by finding a +1 slope when plotting log10(𝜎a(𝜏))
against log10(𝜏). Letting 𝜏 =

√
2 in (26) solves the equation

for 𝜎rr, which means if the +1 slope line is projected to
𝜏 =

√
2, the value of 𝜎a(𝜏) at that point will equal 𝜎rr.

Although the five sources of error are well defined math-
ematically along the Allan deviation curve via the use of
the slope method, methods for solution are based upon
visual inspection of the graph. That is, for a specific sen-
sor and application, lines with the specific slope(s) of
interest are created and estimates for each parameter are
back-solved by hand or through human-visual inspection.
With current autonomous systems, this tedious process
hampers efficient calibration of IMU's, especially when the
available sensor data are not long enough to ensure a sta-
ble Allan variance curve. Although the length of available
data required varies with each source of error and its true
underlying value, general rules of thumb4,7 suggest several
hours of data are usually required for the slope method
to provide accurate estimates of all sources, especially for
those prevalent in the latter regions of the 𝜏 domain (eg,
𝜎rrw and 𝜎rr) since their effects are only visible after several
hours of continuous IMU operation.

3 AN AUTONOMOUS METHOD
FOR ESTIMATING NOISE
STRENGTH

The proposed method, referred to as the autonomous
regression method for Allan variance (ARMAV) from
hereon, differs from the slope method in that it combines
linear ridge regression15 and nonlinear model estimation16

in order to yield accurate and stable estimates for the five
common noise sources in IMU's instead of using visual
inspection of graphical methods that are hard to auto-
mate. As designed, ARMAV not only performs comparably
in terms of estimation accuracy but is also completely
autonomous, stable under limited data conditions, and
suitable for online IMU characterization.

The key components of the slope method, which are
summarized in Table 1, provide the fundamental rela-
tionships between observed data (Allan variance) and its
predictor variable, 𝜏. However, the slope method identifies
each noise strength coefficient individually by restrict-
ing the graphical search to the areas of the 𝜏 domain
where each noise source is dominant. Using IEEE7 and the
assumption of independence among the sources of noise,
the combined relationship between total Allan variance,
𝜎a, and the contributions from each of the sources is given
by the following:

log10
(
𝜎2

a
)
= log10

(
𝜎2

aq
+ 𝜎2

arw
+ 𝜎2

ab
+ 𝜎2

arrw
+ 𝜎2

arr

)
. (27)

Next, substituting the relationships from Table 1 yields
the following:

log10
(
𝜎2

a
)
= log10

[(
𝜎q
√

3𝜏−1
)2

+
(
𝜎rw𝜏

−1∕2
1

)2

+

(
𝜎b

√
2 log(2)

𝜋

)2

+

(
𝜎rrw

1√
3
𝜏1∕2

)2

+

+

(
𝜎rr

1√
2
𝜏

)2⎤⎥⎥⎦
(28)

from which a nonlinear regression problem with N obser-
vations of the form:

log10(y2) = log10
[
(X𝜷)2] + 𝝐, (29)

where

y =

[
𝜎a1
⋮
𝜎aN

]
, (30)

X =
⎡⎢⎢⎢⎣
√

3𝜏−1
1 𝜏

−1∕2
1 1 1√

3
𝜏

1∕2
1

1√
2
𝜏1

⋮ ⋮ ⋮ ⋮ ⋮√
3𝜏−1

N 𝜏
−1∕2
N 1 1√

3
𝜏

1∕2
N

1√
2
𝜏N

⎤⎥⎥⎥⎦ , (31)

𝜷 =

⎡⎢⎢⎢⎢⎣
𝜎q
𝜎rw
𝜎∗

b
𝜎rrw
𝜎rr

⎤⎥⎥⎥⎥⎦
, (32)

and
𝝐 ∼  (0,Σ), (33)

Σ =
⎡⎢⎢⎢⎣
(𝜎a1𝛿a1)

2 0 · · · 0
0 (𝜎a2𝛿a2 )

2 · · · 0
⋮ ⋮ ⋮ ⋮
0 0 0 (𝜎aN𝛿aN )

2

⎤⎥⎥⎥⎦ (34)

can be constructed and solved using any weighted
least-squares nonlinear regression algorithm such as
Gauss-Newton16 or Levenberg-Marquardt.17 However,
since nonlinear regression problems often require an accu-
rate initial guess,𝜷0, to converge onto the global minimum,
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we first use a linear approximation of (29) to solve the linear
model:

⎡⎢⎢⎢⎣
𝜎a1
⋮
⋮
𝜎aN

⎤⎥⎥⎥⎦
y∈RN×1

=

⎡⎢⎢⎢⎢⎣

√
3𝜏−1

1 𝜏
−1∕2
1 1 1√

3
𝜏

1∕2
1

1√
2
𝜏1

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮√
3𝜏−1

N 𝜏
−1∕2
N 1 1√

3
𝜏

1∕2
N

1√
2
𝜏N

⎤⎥⎥⎥⎥⎦
X∈RN×5

⎡⎢⎢⎢⎢⎣
𝜎q0
𝜎rw0
𝜎∗

b0
𝜎rrw0
𝜎rr0

⎤⎥⎥⎥⎥⎦
𝜷0∈R5×1

+ 𝝐.

(35)

The model described in (35), however, presents a signif-
icant multicollinearity problem since almost every column
in X is dependent on 𝜏. Although multicollinearity is usu-
ally not a problem when evaluating the model's ability to
predict the observed data, it is extremely problematic here
since the desired inference (ie, the initial guess) is based
on the individual coefficient values in 𝜷. Therefore, ridge
regression15 is used to solve (35) using the following:

𝜷̂0 =
(
XTX + 𝜆I

)−1XTy, (36)

where 𝜆 is a tunable, small biasing constant. Using the ini-
tial guess 𝜷̂0, the nonlinear model (29) is then solved to
produce 𝜷̂. Finally, it is important to realize the desired
estimate of 𝜎b is not directly given by 𝜎̂∗

b since it is simply
an estimate of the model's intercept. To obtain the desired
𝜎b, the fitted model in (29) is used along with (22) to yield
the following:

𝜎̂b =
√

𝜋

2 log(2)
min

(
X𝜷̂

)
. (37)

This process is summarized in Algorithm 1. The ARMAV
method was validated using a series of Monte-Carlo simu-
lations along with real-world sensor data from a STIM-300
(tactical grade) IMU, the results of which are discussed in
the following sections.

TABLE 2 Summary of true noise strength coefficients for
Monte-Carlo simulation

Noise Source Value Units

𝜎q 2 × 10−4 [deg] or [m/s]
𝜎rw 8 × 10−3 [deg/

√
hr] or [m/s/

√
hr]

𝜎b 1 × 10−1 [deg/hr] or [m/s/hr]
𝜎rrw 2.00 [deg/hr/

√
hr] or [m/s/hr/

√
hr]

𝜎rr 5.00 [deg/hr/hr] or [m/s/hr/hr]

4 SIMULATION

A 3000-trial Monte-Carlo simulation was executed across
30 unique levels where the length of available sensor
data was incrementally decreased from 6 hours (5.4 mil-
lion samples) to 6 minutes (90 000 samples). Using sim-
ulated IMU data, both the slope method and ARMAV
(Algorithm 1) were used to estimate the five known sim-
ulated noise strength coefficients. The true coefficients
were fixed for the entire simulation and are summarized
in Table 2. Simulated IMU data were generated using
the numerical methods described by Jurado and Raquet18

and are summarized in the following paragraph for
completeness.

In general, simulated IMU data were generated as rate
signals, with units of [deg/s] or [m/s/s], by applying the
appropriate arithmetic operation to the underlying ran-
dom process for each source of noise, and with the corre-
sponding standard deviation from Table 2. For example,
angle/velocity random walk (𝜎rw) data were generated
directly as zero-mean White Gaussian Noise (WGN) since
a random walk process in the integrated signal, with units
[deg] or [m/s], arises from the integration of WGN in the
rate signal, which has units [deg/s] or [m/s/s]. Meanwhile,
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rate random walk (𝜎rrw) data were generated by numeri-
cally integrating a WGN sequence, with units [deg/s/s] or
[m/s/s/s], since the desired random walk was to be found
in the rate signal and not its integral.

Next, the ARMAV method was programmed as shown
in Algorithm 1, with a 𝜆 = 5 × 10−3 value. The par-
ticular 𝜆 value was found experimentally by monitor-
ing variation inflation factor (VIF) values.19 It is impor-
tant to note that the specific value of 𝜆 did not have
a significant effect on the final coefficient estimates
since it only affected the initial guess used in nonlinear
regression.

Finally, the slope method was programmed for com-
parison to ARMAV also using the methods described by
Jurado and Raquet.18 As a brief summary, the slope method
was programmed to calculate the slope of the observed

Allan deviation data and find the closest point (Euclidean
distance) on the slope curve to each of the five slopes of
interest. Then, the Allan deviation value at the particular
𝜏 of interest was found by using a point-slope formula for
the desired line.

For each of the 30 distinct levels of available sensor
data, 3000 trials were conducted, and the resulting mean
relative bias and associated 95% basic percentile confi-
dence intervals were estimated by bootstrapping. Figure 3
illustrates the percent relative mean bias and associated
95% basic percentile confidence interval for each level
of the simulation and for each of the five noise sources,
all relative to their respective true values from Table 2.
Additionally, Table 3 summarizes percent relative bias
results from the simulation at the 1-hour, 3-hour, and
6-hour levels.

FIGURE 3 Monte-Carlo comparison between slope and regression method. The ARMAV method produced significantly more accurate,
and stable results (in terms of variance) as indicated by the confidence intervals, especially as the length of available data decreased below
2 hours [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

http://wileyonlinelibrary.com
www.ion.org
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Overall, both the figure and the table illustrate more
stable and generally more accurate estimates when using
ARMAV, especially when the length of available data
is greater than one hour. As shown in both Figure 3
and Table 3, ARMAV produced substantially more stable
results (in terms of variance) as indicated by the width of
the confidence interval, especially as the length of avail-
able data decreased below two hours. With the exception
of 𝜎rrw, percent relative bias was smaller with less vari-
ability when ARMAV was used to estimate the errors than
when the slope method was used. In the case of 𝜎rrw,

ARMAV resulted in a lower percent relative bias until the
length of available data fell below 30 minutes. It is also
important to note that the slope method resulted in several
instances of large variance for particular lengths of avail-
able data, generally less than 2 hours, across every noise
source.

Comparisons of resulting estimation of ARMAV to the
slope method were also conducted for applications and
settings in which the Allan deviation curve is essentially
incomplete. In these scenarios, the simulated stochastic
processes did not include one of the five common noise

TABLE 3 Mean percent relative bias comparison between ARMAV and slope method

Slope Method Regression Method
Time 𝜷̂ Mean Std. Dev. 95% LCL 95% UCL Mean Std. Dev. 95% LCL 95% UCL
1 hour 𝜎̂q 1.03 × 10−2 1.48 × 10−2 3.02 × 10−4 5.31 × 10−2 3.65 × 10−3 8.26 × 10−3 8.47 × 10−3 2.37 × 10−2

𝜎̂rw 6.15 × 10−1 2.87 2.93 × 10−1 4.16 × 10−1 −2.98 × 10−2 1.11 × 10−1 −2.67 × 10−1 1.26 × 10−1

𝜎̂b 2.80 × 10−2 5.71 × 10−1 1.65 × 10−1 1.93 −4.79 × 10−2 6.18 × 10−2 −1.48 × 10−1 1.05 × 10−1

𝜎̂rrw 1.42 × 10−1 2.04 × 10−1 −2.28 × 10−1 6.00 × 10−1 −5.42 × 10−2 2.12 × 10−1 −4.92 × 10−1 3.50 × 10−1

𝜎̂rr 3.16 × 10−1 4.34 × 10−1 −4.54 × 10−1 1.27 −1.26 × 10−1 5.25 × 10−1 −1.00 8.57 × 10−1

3 hours 𝜎̂q 6.38 × 10−3 8.56 × 10−3 2.27 × 10−6 3.04 × 10−2 9.81 × 10−4 5.77 × 10−3 −1.24 × 10−2 1.17 × 10−2

𝜎̂rw 4.55 × 10−1 3.26 3.17 × 10−1 3.87 × 10−1 1.78 × 10−3 7.10 × 10−2 −1.30 × 10−1 1.61 × 10−1

𝜎̂b −4.31 × 10−2 5.81 × 10−1 −1.29 × 10−1 −2.88 × 10−2 −4.64 × 10−2 5.37 × 10−2 −1.15 × 10−1 1.08 × 10−1

𝜎̂rrw 1.66 × 10−1 1.86 × 10−1 −2.02 × 10−2 6.76 × 10−1 −6.57 × 10−3 1.51 × 10−1 −2.91 × 10−1 3.26 × 10−1

𝜎̂rr 1.32 × 10−2 2.71 × 10−1 −5.15 × 10−1 5.41 × 10−1 −5.72 × 10−2 2.93 × 10−1 −6.80 × 10−1 4.91 × 10−1

6 hours 𝜎̂q 4.75 × 10−3 6.09 × 10−3 1.03 × 10−4 2.17 × 10−2 8.32 × 10−4 4.23 × 10−3 −9.06 × 10−3 8.82 × 10−3

𝜎̂rw 3.53 × 10−1 1.30 × 10−2 3.27 × 10−1 3.78 × 10−1 4.26 × 10−3 5.32 × 10−2 −9.73 × 10−2 1.37 × 10−1

𝜎̂b −6.32 × 10−2 5.05 × 10−1 −1.14 × 10−1 −4.25 × 10−2 −5.50 × 10−2 3.92 × 10−2 −1.05 × 10−1 5.96 × 10−2

𝜎̂rrw 1.50 × 10−1 1.14 × 10−1 4.06 × 10−2 2.47 × 10−1 −5.18 × 10−3 1.09 × 10−1 −2.11 × 10−1 2.30 × 10−1

𝜎̂rr 2.45 × 10−3 2.02 × 10−1 −4.16 × 10−1 3.92 × 10−1 −2.29 × 10−2 1.95 × 10−1 −4.35 × 10−1 3.50 × 10−1

Abbreviations: LCL, lower confidence level from basic percentile; UCL, upper confidence level from basic percentile.

TABLE 4 Actual estimation bias comparisons between regression and slope methods, no quantization noise

Slope Method: Auto Slope Method: Manual Regression Method
Time 𝜷̂ Mean Std. Dev. Mean Std. Dev Mean Std. Dev.
1 hr 𝜎̂q 4.25 × 10−3 1.69 × 10−2 – – 6.81 × 10−7 7.73 × 10−7

𝜎̂rw 5.60 × 10−5 1.26 × 10−3 5.60 × 10−5 1.26 × 10−3 1.83 × 10−5 1.14 × 10−4

𝜎̂b 1.39 × 10−1 1.44 × 10−1 1.39 × 10−1 1.44 × 10−1 1.14 × 10−1 1.17 × 10−2

𝜎̂rrw 2.56 × 10−1 4.38 × 10−1 2.56 × 10−1 4.38 × 10−1 −1.20 × 10−1 3.77 × 10−1

𝜎̂rr 1.57 2.33 1.57 2.33 −7.38 × 10−1 2.80
3 hrs 𝜎̂q 1.40 × 10−3 3.13 × 10−2 – – 3.37 × 10−7 5.07 × 10−7

𝜎̂rw 2.45 × 10−5 4.64 × 10−5 2.45 × 10−5 4.64 × 10−5 4.56 × 10−5 6.08 × 10−5

𝜎̂b 1.19 × 10−1 1.49 × 10−1 1.19 × 10−1 1.49 × 10−1 1.13 × 10−1 6.60 × 10−3

𝜎̂rrw 3.14 × 10−1 3.30 × 10−1 3.14 × 10−1 3.30 × 10−1 −2.41 × 10−2 2.17 × 10−1

𝜎̂rr 2.66 × 10−1 1.27 2.66 × 10−1 1.27 −1.96 × 10−1 1.34
6 hrs 𝜎̂q 7.71 × 10−5 4.07 × 10−5 – – 2.40 × 10−7 4.08 × 10−7

𝜎̂rw 2.27 × 10−5 4.25 × 10−5 2.27 × 10−5 4.25 × 10−5 4.53 × 10−5 4.89 × 10−5

𝜎̂b 1.09 × 10−1 4.08 × 10−3 1.09 × 10−1 4.08 × 10−3 1.12 × 10−1 5.04 × 10−3

𝜎̂rrw 2.91 × 10−1 2.10 × 10−1 2.91 × 10−1 2.10 × 10−1 −2.09 × 10−2 1.68 × 10−1

𝜎̂rr 3.94 × 10−2 1.02 3.94 × 10−2 1.02 −6.97 × 10−2 9.73 × 10−1
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components, ie, either quantization or rate ramp compo-
nents was not included in the simulated IMU data. In these
comparisons, another set of 3000-trial Monte-Carlo simu-
lations were conducted separately for each source of error
and in the same manner as previously presented, with the
exception that the true 𝜎q and 𝜎rr were set to zero in each
simulation, respectively. For comparison, results from the
slope method were also computed using two techniques:
In autonomous mode, the slope method was allowed to
run as previously described18 with no additional human
intervention, while in manual mode, the slope method
was reprogrammed to skip the estimation of the particular
noise coefficient that was known to be zero. Tables 4 and
5 provide, respectively, the results of these simulations for
the cases when quantization and rate ramp components
were missing. Results are presented in terms of bias rather
than percent relative bias for better comparisons.

As shown in both tables, the nonnormalized biases from
ARMAV were up to four orders of magnitude closer to the
truth (zero) when compared with the autonomous slope

method. This is due to the fact the slope method, when
programmed, looks for all parameters (ie, finds the clos-
est answer matching the graphical method for each noise
coefficient). In contrast, the manual slope method was
reprogrammed to assume the missing noise coefficient was
zero. As expected, its results for all other coefficients were
an exact match to the autonomous-mode slope method.
Here, it is important to emphasize these scenarios had
to be specially programmed from an initial visual inspec-
tion of the Allan variance data for the slope method to
produce good results. In contrast, for data applications in
which these sources of noise are not estimable from the
data, ARMAV autonomously and reliably provided rea-
sonable estimates with no changes to the programmed
algorithm.

5 APPLICATION TO STIM-300 IMU
ANALYSIS

The ARMAV method was applied to real-world sensor data
from an STIM-300 (tactical grade) IMU. The manufac-

TABLE 5 Actual estimation bias comparisons bewteen regression and slope method, no rate ramp noise

Slope Method: Auto Slope Method: Manual Regression Method
Time 𝜷̂ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
1 hr 𝜎̂q 5.04 × 10−5 1.56 × 10−3 5.04 × 10−5 1.56 × 10−3 2.94 × 10−6 3.46 × 10−6

𝜎̂rw 1.28 × 10−2 4.32 × 10−2 1.28 × 10−2 4.32 × 10−2 −1.43 × 10−3 2.06 × 10−3

𝜎̂b 1.83 × 10−1 1.69 × 10−1 1.83 × 10−1 1.69 × 10−1 1.28 × 10−1 1.78 × 10−2

𝜎̂rrw −9.21 × 10−2 4.76 × 10−1 −9.21 × 10−2 4.76 × 10−1 −3.77 × 10−1 4.90 × 10−1

𝜎̂rr 5.28 2.85 – – 1.17 1.66
3 hrs 𝜎̂q 5.42 × 10−4 1.73 × 10−2 5.42 × 10−4 1.73 × 10−2 2.22 × 10−6 2.86 × 10−6

𝜎̂rw 3.70 × 10−2 1.57 × 10−1 3.70 × 10−2 1.57 × 10−1 −9.57 × 10−4 1.47 × 10−3

𝜎̂b 2.60 × 10−1 3.62 × 10−1 2.60 × 10−1 3.62 × 10−1 1.28 × 10−1 1.30 × 10−2

𝜎̂rrw −8.31 × 10−2 3.69 × 10−1 −8.31 × 10−2 3.69 × 10−1 −1.90 × 10−1 3.06 × 10−1

𝜎̂rr 3.04 2.08 – – 5.43 × 10−1 8.31 × 10−1

6 hrs 𝜎̂q 9.36 × 10−4 2.87 × 10−2 9.36 × 10−4 2.87 × 10−2 2.01 × 10−6 2.60 × 10−6

𝜎̂rw 6.83 × 10−2 3.06 × 10−1 6.83 × 10−2 3.06 × 10−1 −7.79 × 10−4 1.23 × 10−3

𝜎̂b 3.25 × 10−1 5.28 × 10−1 3.25 × 10−1 5.28 × 10−1 1.29 × 10−1 1.23 × 10−2

𝜎̂rrw −6.79 × 10−2 3.53 × 10−1 −6.79 × 10−2 3.53 × 10−1 −1.53 × 10−1 2.69 × 10−1

𝜎̂rr 2.17 1.78 – – 4.02 × 10−1 6.32 × 10−1

TABLE 6 Summary of Allan variance analysis results for STIM-300 IMU sensors

Accelerometer Gyroscope
𝜷̂ Slope: Auto Slope:Manual Regression Spec Slope: Auto Slope: Manual Regression Spec

𝜎̂q 7.44 × 10−5 – 7.28 × 10−1 – 1.61 × 10−2 – 3.28 × 10−5 –
𝜎̂rw 5.08 × 10−2 5.08 × 10−2 5.41 × 10−2 6.00 × 10−2 1.51 × 10−1 1.51 × 10−1 1.51 × 10−1 1.50 × 10−1

𝜎̂b 2.99 2.99 2.99 2.66 6.66 × 10−1 6.66 × 10−1 6.75 × 10−1 5.00 × 10−1

𝜎̂rrw 3.79 × 101 3.79 × 101 3.84 × 101 – 1.33 1.33 9.00 × 10−1 –
𝜎̂rr 4.28 × 101 4.28 × 101 4.73 × 101 – 9.85 × 10−1 9.85 × 10−1 8.45 × 10−1 –
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turer of this sensor provides specifications for the values
of 𝜎rw and 𝜎b,20 which are reproduced along with the
analysis results in Table 6. A single 6-hour data collec-
tion was performed at static conditions and room tem-
perature for the x-axis accelerometer and gyroscope at a
sampling rate of 250 Hz. It is important to note that the
purpose of this data collection was to simply demonstrate
the ability of ARMAV to match manufacturer specifica-
tions, which were only specified for the random walk
and bias instability components. Therefore, the internal
temperature of the IMU was not tightly controlled. The
MATLAB code and inertial dataset used in this research
are provided as supplementary materials via Autonomous
Regression Method for Allan Variance.21 Plots of the fit-
ted Allan deviance curve resulting from the application
of the regression method for both the accelerometer and
gyroscope are provided in Figures 4 and 5. As shown,
ARMAV is able to accurately model the observed data from

both devices with no need for human intervention and
directly enables the accurate estimation of the necessary
noise strength coefficients. The resulting 95% prediction
bands generated in each figure cover the possible range of
future observations simultaneously and provide a measure
of the model's quality. Finally, Table 6 provides the results
from ARMAV on the STIM-300 IMU data and compares
these estimates to the slope method. As shown, the par-
ticular sensor tested did not exhibit quantization noise (ie,
𝜎q = 0), yet ARMAV was able to accurately estimate all
noise coefficients, and in the case of 𝜎q, its estimates were
up to five orders of magnitude closer to zero when com-
pared with the autonomous slope method. Additionally, in
the case of 𝜎rw and 𝜎b, where the manufacturer provided
specifications,20 ARMAV was closer to specifications in the
majority of cases and always at least as accurate as the slope
method.

FIGURE 4 Illustration of fitted nonlinear model on accelerometer Allan deviation measurements. As shown, ARMAV is able to accurately
model the observed data with no need for human intervention, directly enabling the accurate estimation of the necessary noise strength
coefficients. The resulting 95% prediction intervals cover a possible range of Allan deviation observations for each 𝜏 [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

http://wileyonlinelibrary.com
www.ion.org
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FIGURE 5 Illustration of fitted nonlinear model on gyroscope Allan deviation measurements. As shown, ARMAV is able to accurately
model the observed data with no need for human intervention, directly enabling the accurate estimation of the necessary noise strength
coefficients. The resulting 95% prediction intervals cover a possible range of Allan deviation observations for each 𝜏 [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

6 CONCLUSIONS AND FUTURE
WORK

This research has proposed a novel autonomous,
regression-based method for the Allan variance analysis,
in the context of IMU sensor calibration. The ARMAV
method was shown to be generally more accurate and
stable than the state-of-the-art slope method, especially
when the length of available sensor data was greater than
one hour. Additionally, ARMAV was shown to be com-
pletely autonomous and simple to program, requiring
no further human input even when particular sources
of noise were not present in the observed data. These
findings provide significant advances in the calibration of
inertial sensors as the state-of-the art method (the slope
method) requires human input either via visual inspec-
tion of Allan deviance curves, or specific coding that is
not transferable to other observed or updated data sets. As
such, this method directly enables online or autonomous
IMU sensor calibration using the Allan variance, with no

prior knowledge on the specific sources of noise affecting
an inertial sensor of interest. Future work in this area
involves the integration of the ARMAV method into an
online navigation framework, where a navigation com-
puter is able to constantly update its internal IMU model
based on Allan variance analysis of observed IMU out-
put. The implications of this integration is a continually
updated, safe, accurate awareness of vehicle position,
velocity, and orientation at all times.
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