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ABSTRACT

Multi-sensor navigation is quickly becoming operational as more alternative sensors continue to mature.
Unfortunately, increasing the number of sensors also increases the possibility of corrupting the navigation
solution with incorrect measurement models and undetected sensor failures. The multi-sensor resiliency chal-
lenge remains largely unsolved, with only some sensor combinations (e.g., visual-inertial and GPS-inertial)
having dedicated resiliency research. This research aims to provide multi-sensor resiliency through an au-
tonomous sensor management framework. The proposed framework places each sensor into one of four
modes: monitoring, validation, calibration, and remodeling. Each mode contains particular tasks that affect
how the filter processes sensor measurements. The framework is developed by generalizing and interfacing
functions found in existing research (fault detection, parameter estimation, and model selection) to achieve
similar goals, but in a robust and sensor-agnostic manner. The proposed framework is compared against con-
ventional filtering using two simulated scenarios including multiple sequential sensor failures and incorrectly
modeled sensors.



INTRODUCTION

Over the past two decades, a significant portion of navigation research has been devoted to alternative means of
precision navigation and timing, through the modeling and testing of non-traditional sensors (e.g., vision [1], radio [2],
magnetic [3], etc.). As research matures in each of these sensor areas, multi-sensor alternative navigation is quickly
becoming an operational possibility. However, with each additional sensor allowed into a navigation system comes the
increased possibility of corrupting the navigation solution due to sensor model misspecification and undetected sensor
failures or anomalies. Therefore, a robust method of managing sensors with questionable models is now necessary
to ensure navigation solutions are accurate and resilient against sensor anomalies, sensor failures, and sensor model
mismatches, all in a plug-and-play or online fashion.

Some research has been conducted in the areas of managing navigation sensors for computational requirements
[4], managing self-correcting Simultaneous Localization and Mapping (SLAM) sensors [5], and validating ad-hoc
sensor networks [6]. However, there are currently no frameworks, to the authors’ knowledge, that formalize the
definitions and interface between the processes of detecting faulty sensors, estimating sensor model parameters, and
adapting sensor model functions, all in an online fashion and while preventing the navigation solution from becoming
corrupted. There is, however, compartmentalized research in related areas, where common navigation challenges
related to sensor modeling have been solved, albeit in limited scope and usually tuned for specific sensors. These
related research areas are summarized below.

The first and arguably most critical step in resilient sensor management is fault detection. Sensor fault detection
and exclusion is often accomplished in navigation through statistical analysis of measurements and measurement
residuals [7][8][9][10][11][12][13][14][15][16][17]. However, the majority of these methods commonly focus on navigation
problems with a single sensor or a deeply coupled sensor pair, where the measurement residuals affected by a fault
belong to a known sensor, which is not a valid assumption in a multi-sensor problem. Nonetheless, detection and
identification of a faulty sensor is only the first step of the problem in creating a resilient sensor management system.
Since many of the detected faults may be created by model misspecification or temporary anomalies, there also exists
a need to overcome the faults (and continue using the sensor in question) through the online modification of the
specified sensor model.

One common method for overcoming sensor misspecifications is to estimate variable sensor model parameters
that may have changed during navigation (e.g., lever arms, rotation matrices, scale factors, etc.). This type of sensor
model modification is often referred to as calibration. There are a large number of online calibration examples across
many sensor fields such as magnetometers [18], accelerometers [19], gyroscopes [20], lasers [21], audio sensors [22],
Pitot-static sensors [23], to name a few. One such research area with significant recent advances is online calibration
of a Visual-Inertial System (VINS) [24][25][26][27][28]. As mature as these calibration research areas may be, they
still only tend to focus on a particular sensor or sensor combination (e.g., visual and inertial or magnetic and inertial),
and often do not address the tasks of detecting the need for calibration and independently evaluating the effectiveness
of the calibration results. Additionally, they do not adequately address other types of sensor model modifications
that may be needed for resiliency.

A second class of methods for overcoming sensor misspecifications is to alter the functional form of the sensor model
to account for missing parameters or changing environmental conditions (e.g., time-changing biases, stochastic clock
errors, temperature effects, etc.). This type of sensor model modification is often referred to as adaptive estimation.
Current adaptive estimation literature tends to be divided between continuous estimation of sensor and process noise
covariances [29][30][31] and multiple model estimation using a finite set of competing models [32][33][34]. These
techniques provide mature methods for adaptive estimation. However, they tend to be tailored for specific failure
modes and require the adaptation process to run continuously. Additionally, they do not address the calibration
task, and do not tend to provide an independent means for validating the adaptive estimation results.

This research proposes a novel framework that contributes both a common language and a set of critical functions
and their interactions, that together provide sensor-agnostic, statistically rigorous, and resilient sensor management.
The proposed framework combines the detection, identification, calibration, model selection, and independent vali-
dation functions into four interconnected modes of operation: monitoring, validation, calibration, and remodeling.
In doing so, it is able to provide a greater number of resiliency functions than any of the individual research subsets
alone, thereby directly enabling continued navigation operations across a greater range of sensor and/or sensor model
anomalies. The complete set of resiliency functions directly enabled through the proposed framework is summarized
in Table 1.



Table 1: List of resilient sensor management functions provided by the proposed framework.

Mode Online Sensor Management Functions

Monitoring
Detect inconsistent measurement statistics
Identify the affected or faulty sensor
Decide when to modify existing sensor model

Validation
Validate a questionable sensor model against known sensors
Verify results from parameter estimation and model selection
Recover from temporary sensor failures

Calibration
Estimate selected sensor model parameters
Dynamically augment and initialize necessary filter states
Follow a prescribed sequence for parameter estimation

Remodeling Select best sensor model from a list of candidates
Dynamically initialize multiple-model filter bank

RELATED WORK

Though no framework combining the aforementioned functions from Table 1 been found in literature, several works
have been found whose contributions were leveraged as part of the framework development process. These works are
briefly described below.

Statistical hypothesis testing forms an integral part of the fault detection, model validation, and adaptive esti-
mation tasks. In general, any hypothesis test can be stated using a Likelihood Ratio Test (LRT) [35], by assigning
competing statistical distributions to each of the hypotheses in the test. Such LRTs are useful since their distri-
bution tends to be Chi-squared [36][37], regardless of the distributions of the competing hypotheses, and especially
if the competing hypotheses are assumed to be normally distributed. Integrity monitoring and fault detection and
exclusion research in the area of Global Positioning System (GPS) and Inertial Navigation System (INS) integration
such as [8][9][10][11][12][15][16][17][38] use LRTs and test statistics to detect faulty GPS measurements, and more
importantly, predict system performance in the presence of undetected faults. Meanwhile, the work in [13] expands
such methods using multiple filters to identify specific biased satellite measurements and exclude them from affecting
the solution. Although not specifically shown in this paper, the implementation of our tests in the monitoring mode
use a multi-filter approach such as the one described in [13] to detect and identify, not individual faulty pseudoranges,
but faulty sensors in a multi-sensor system.

As previously stated, fault detection and identification are just the first two (albeit the most important) functions
in a resilient sensor management framework. The goal, especially in the area of emerging and alternative sensors,
is not only to detect and identify mismodeled sensors, but also dynamically modify their stated models in order to
enable their continued use while protecting the navigation solution. The research in [5] proposes a multi-phased
process that accomplishes multiple tasks from our proposed framework. Namely, the VINS calibration method
proposed therein continually estimates camera extrinsic parameters and statistically compares, via a LRT, their
short-term and long-term estimates. If the short-term and long-term estimates are statistically different, a three-
phased calibration routine is initiated. Finally, the calibration routine is terminated once the covariance of the
estimated parameters exhibits desired convergence criteria. In the context of our proposed framework, the research
in [5] provides a VINS-centric sensor manager that provides a portion of the tasks contained in our monitoring mode,
and most of the tasks contained in our calibration mode. However, it is specifically designed to work with VINSs,
and lacks both multi-sensor fault detection as well as identification and independent validation of the calibration
results.

When detected sensor failures are not caused by inaccurate calibration parameters, one other cause may be that
the stated sensor model is either missing parts of the measurement function, or has been equipped with the wrong
measurement functional form. Since a particular functional form may be wrong in an infinite number of ways, the
task of finding the most appropriate sensor model function is usually solved by fitting a finite set of models in a
multiple model technique such as [33][34]. Alternatively, some may choose to estimate certain stochastic model
parameters continuously such as [29][30][31]. All of these methods for overcoming incomplete or incorrect model
functions provide general examples of tasks contained in our remodeling mode. The specific remodeling technique
shown in our example scenarios uses a filter bank with multiple parallel models, much like the aforementioned



research. However, it also uses statistical model selection criteria such as Akaike Information Criterion (AIC)[39] to
select the most likely model, and independently validates the selection results using our test in the validation mode.

Finally, as foreshadowed in the previous paragraphs, existing research often lacks a means of independently
(or externally) validating calibration and adaptive estimation results for a particular sensor. Additionally, most
navigation sensors require the estimation of additional states contained in their measurement model (e.g., clock
errors, biases, scale factors, etc.). However, estimating those additional states requires allowing the sensor in question
to affect the navigation solution. Moreover, even if a separate filter is used for the sensor in question, allowing the
sensor to fully affect the solution of any filter will often mask any model mismatches that are inside the uncertainty
of the additional state being estimated. In order to solve both of these challenges, we employed the Kalman-Schmidt
/ partial update equations [40] [41] in the design of our validation mode test. The partial update equations allow the
estimation of sensor-specific states while preventing the measurement update from affecting core navigation states
(e.g., position, velocity, attitude).

AN AUTONOMOUS AND RESILIENT SENSOR MANAGER

We now introduce a novel, autonomous method for resilient sensor management that performs all the previously
identified functions by expounding on the building blocks contained in each of the individual research areas, and co-
herently weaving their functionality into a sensor-agnostic framework. The proposed framework, henceforth referred
to as Autonomous and Resilient Management of All-source Sensors (ARMAS), statistically evaluates sensor perfor-
mance and places each sensor into one of four operating modes: monitoring, validation, calibration, and remodeling.
ARMAS then provides resilient sensor management by controlling how a navigation filter responds to measurements
from a particular sensor based on that sensor’s mode. Table 1 (shown previously) summarizes the key functionality
provided by each mode of operation.

Framework Implementation

In general, the ARMAS framework is designed around an online or plug-and-play environment, applies to all navi-
gation sensors, does not require sensor-specific tuning, and can be adapted to any filtering technique. The examples
illustrated below were developed in MATLAB® using the SCORPION estimation framework [42] for filter spawning
and measurement processing. It is important to note that the proposed framework was designed around the plug-
and-play concept of operation, assuming sensors are serially added onto an ongoing navigation process. The only
assumption imposed onto the initial ongoing navigation process is that the navigation solution is consistent (i.e., its
estimates are unbiased, and the estimated error covariance matches actual performance). This assumption does not
preclude a “weak” sensor (i.e., large measurement error covariance) from being the only sensor in the system. It
simply dictates that if there is only a single sensor in the system when a new sensor is added, its residual statistics
are assumed to be accurate. Figure 1 illustrates a proposed state transition diagram that coherently transitions
sensors through the various modes of operation. The following sections expound on each of the modes of operation
and provide general guidelines for proper implementation.

To facilitate further discussion on ARMAS development, we will adapt the stochastic estimation convention from
[7] for multi-sensor applications. Consider a navigation problem of the form

ẋ(t) = f [x(t), ϵ(t),u(t), t] +G(t)w(t), (1)

where x is the N×1 navigation state vector containing the vehicle’s core navigation states (position, velocity, attitude,
time, etc.), ϵ is an M × 1 vector containing additional states needed to account for measurement errors, u is the
control input vector, G is an (N +M)×W linear operator, and w is a W × 1 white Gaussian noise process with a
W ×W continuous process noise strength matrix Q. The discretized [43] non-linear system is then solved using the
Extended Kalman Filter (EKF) algorithm [7] [44]. The state estimates are propagated using the (possibly) non-linear
state dynamics model, and updated using measurements from available sensors. In a multi-sensor environment with
J sensors, the jth sensor provides Z-dimensional discrete measurements, z[j]k , at time tk, which are modeled as

z
[j]
k = h[j]

[
x(t), ϵ[j](t),u(t), t,p[j]

]
+ v

[j]
k , (2)

where h[j] is a (possibly) non-linear measurement function for sensor j, ϵ[j] is a L× 1 (L ≤ M) subset of ϵ consisting
of the additional states required for processing measurements for sensor j (e.g., a clock error process, constant bias,



etc.), p[j] is a P ×1 vector of observable model parameters for h[j] selected by the user (e.g. a lever arm, scale factor,
etc.), and v

[j]
k is a Z × 1 discrete white Gaussian noise process with covariance matrix R

[j]
k . Given the estimated

quantities x̂−
k , ϵ̂[j]

−

k , p̂[j], the Z × 1 measurement residual, r[j]k , at time t = tk for sensor j is given by

r
[j]
k = z

[j]
k − h[j]

[
x̂−
k , ϵ̂

[j]−

k ,uk, tk, p̂
[j]
k

]
. (3)

Additionally, the residual vector from (3) is expected to follow the distribution

r
[j]
k ∼ N

(
0

Z×1
,S

[j]
k

)
, (4)

S
[j]
k = H

[j]
k P−

k H
[j]T

k +R
[j]
k , (5)

where H
[j]
k is the Z × (N + M) Jacobian of h[j] about the current estimate, and P−

k is the (N +M)× (N +M)
state estimation error covariance matrix at time t = tk. In this context, the goal of ARMAS is to ensure incoming
measurements z

[j]
k truly adhere to their stated models by analyzing the statistical distribution of their residuals; and

if not, protecting the core navigation solution, x̂, while attempting to modify ϵ[j] and/or p[j] to enable continued
sensor use.

Sensor Initialization

As previously stated, ARMAS places each sensor into one of four operating modes plus a failed state. In a plug-
and-play environment with an ongoing navigation process, each new sensor is initialized into one of two modes:
monitoring or validation. This initial placement is based on how confident users may be in the current model
available for a particular sensor. For example, sensors that have well understood models and stochastic processes,
such as a GPS receiver, could be considered “trusted”, and placed directly into monitoring mode, while emerging
alternative sensors with more questionable error models could be considered “untrusted” and placed into validation
mode. To take advantage of this functionality, an ARMAS user can specify the initial trust for each sensor (e.g.,
trusted or untrusted), or provide a default setting for all new sensors.
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Figure 1: Proposed state transition diagram for ARMAS framework. New sensors (offline) begin in either validate
or monitor mode. A failed monitoring test starts a calibration and remodeling loop, whose effectiveness is evaluated
by the validation test. The loop continues until the validation test is passed or the sensor model selection is
unchanged. Failed sensors can be periodically re-validated to recover from temporary anomalies using Resilient
Sensor Recovery (RSR).



Monitoring Mode

Monitoring mode is used to detect and identify faulty sensors in a multi-sensor problem. In this context, a faulty
sensor refers to a sensor whose stated model is not consistent with its observed performance, which could be caused by
temporary or permanent failures, as well as dynamic changes to the sensing environment (e.g., atmosphere, terrain,
multi-path, etc.). Sensors in monitoring mode are able to fully affect the navigation solution provided to the user
since they are trusted. This poses a challenge to detecting model divergence using a single-filter solution, since
the effects of a mismodeled sensor on the navigation solution are not easily attributable to a particular sensor. An
example of this problem is a strong (i.e., low measurement noise strength) sensor with an un modeled bias that
“pulls” the filter solution away from truth to absorb the bias. In that case, the faulty sensor’s residuals would be
statistically valid, while potentially making the residuals from weaker yet not faulty sensors invalid. Any method
that can robustly detect and attribute sensor faults can be used in this mode. For our particular implementation, we
adapted a multi-filter approach similar to that described in [13] to apply beyond satellite pseudorange measurements.
In general, our current approach is two-phased, and relies on running K parallel sub-filters, each filter excluding one
of the K ≤ J sensors found in monitoring mode. In the first phase, measurement residuals are collected between each
trusted sensor and each monitoring sub-filter using (3). This operation produces K2 residual collections which can
be individually evaluated using a statistical hypothesis test such as the χ2 test [38]. In the second phase, if any of the
χ2 tests failed, the culprit sensor is found by assuming only a single sensor has failed and deducing the failure pattern
from the K ×K results matrix. This process can be expanded to assume more than one failed sensor by increasing
the number of sub-filters and the number of excluded sensors per filter. Residuals are collected continuously for every
sensor in monitoring mode, with a test decision produced for each sensor and at a user-defined rate. The test is
passed if the sensor in question is not found to be a culprit, and failed otherwise. If the test is passed, the sensor in
question remains in monitoring mode. Otherwise, the sensor is no longer allowed to affect the solution and is placed
into validation mode, where its stated model is independently validated against the other (trusted) sensors. To take
advantage of monitoring functionality, an ARMAS user needs to specify the following:

1. The monitoring period (e.g., number of samples or time elapsed between tests).

2. The statistical significance level (i.e., probability of false alarm).

Validation Mode

Validation mode is used to statistically validate an untrusted sensor model using information from trusted sensors.
Sensors in validation mode are only able to affect state estimates for their unique states, ϵ[j], while the core navigation
states, x, are only affected by trusted sensors (i.e., sensors in monitoring mode). This poses a challenge when
processing measurements from an untrusted sensor since we are to consider the stochastic distribution of all filter
states while only allowing an untrusted measurement update from sensor j to affect ϵ[j]. An example of this challenge
would be estimating a receiver clock error without allowing the receiver to affect the navigation solution, and while
preventing the clock error estimate from absorbing any other missing error sources. To solve this challenge in a plug-
and-play environment, we initialize a validation sub-filter using a copy of the main filter whenever a (untrusted) sensor
goes into validation mode. Using the Schmidt or partial update equations [40][41] in the sub-filter, measurement
updates from an untrusted sensor j are only able to affect ϵ[j], while measurement updates from sensors in monitoring
mode (i.e., trusted) are able to affect all filter states. Residuals are then collected between the untrusted sensor and
the validation sub-filter using (3), and tested for likelihood of occurrence using any statistical hypothesis test. For
our particular implementation, we developed a general LRT using residual Malanahobis distances [36]. Similar to
the behavior in monitoring mode, residuals are collected continuously for every sensor in validation mode, with a test
decision produced at a user-defined rate. The mode transition from validation mode is determined by both the results
of the validation LRT and the previous ARMAS mode of the sensor in question. As illustrated in Figure 1, validation
mode is used to externally validate sensor models after failing a monitoring test, completing a calibration sequence,
and completing a remodeling selection. Additionally, users may opt to periodically place permanently failed sensors
back into validation mode to check for passage of temporary anomalies that might have caused an insuperable failure,
which we refer to as Resilient Sensor Recovery (RSR). To take advantage of validation functionality, an ARMAS
user needs to specify the following:

1. The validation period (e.g., number of samples or time elapsed between tests).

2. The statistical significance level (i.e., probability of false alarm).



3. Which states used in h[j] are core navigation states (i.e., x).

4. Which states used in h[j] are sensor-unique states (i.e., ϵ[j]).

5. If RSR is enabled, the RSR period (i.e., how often to attempt post-fail validation).

Calibration Mode

Calibration mode is used to dynamically re-estimate variable model parameters when a sensor model has been
identified as faulty. Sensors enter calibration mode after having failed an initial or post-monitoring validation test,
and are considered untrusted until they can be validated and placed back into monitoring mode. In calibration
mode, the functional form of the sensor model is assumed correct, but certain model parameters, p[j], inside the
measurement model function from (2) are to be re-estimated. The parameter estimation may also require specific
sequencing (i.e., estimate subsets of p[j] in a specified order) in order to maintain observability, which in turn requires
specifying sequencing criteria, or a method for determining when a step in the sequence is complete. An example
of this type of problem would be the camera calibration algorithm described in [25], where the camera extrinsic
parameters (lever arm and Euler angles) are estimated separately (Euler angles first, then lever arm) in order to
maintain observability, and the transition between sequence steps is driven by convergence of the associated state
covariance matrix. For our particular implementation, we generalized the calibration process into a set of simple
instructions provided by users such that any sensor calibration method that can be expressed in terms of a sequenced
state vector augmentation and corresponding sequence transition criteria can be easily and autonomously executed.
The parameter estimation is performed using a calibration sub-filter that is initialized based on a copy of the main
filter whenever a sensor enters calibration mode. Once all steps in the stated calibration sequence are completed, the
sensor in question is placed back into validation mode to externally validate the calibration results against trusted
sensors as described above. It is also important to note here that since sensors in calibration mode are considered
untrusted, their measurement updates during a calibration sequence are only able to affect estimates for ϵ[j] and p[j],
which tends to increase observability on p[j] since estimates for x are provided by trusted sensors. For this reason,
a calibration performed using ARMAS can be considered an external or independent calibration. To take advantage
of calibration functionality, an ARMAS user needs to specify the following:

1. Which parameters in h[j] are to be estimated during calibration (i.e., p[j]).

2. The initial estimate for each parameter (i.e., p[j]
0 (i), i = 1, . . . , P ).

3. The initial uncertainty for each parameter (i.e., σ[j]
0 (i), i = 1, . . . , P ).

4. The sequence group for each parameter (i.e., when to start estimating).

5. Transition criteria for each parameter (i.e., when to stop estimating).

Subsequently, if the sensor in question enters calibration mode, ARMAS automatically augments the filter states
using the provided initial estimates and uncertainties for the first group in the sequence, then transitions to the next
group once every group member has met its transition criteria, until all groups are completed.

Remodeling Mode

Remodeling mode is used to dynamically modify the functional form of the measurement model when a sensor model
has been identified as faulty. Sensors enter remodeling mode after failing a post-calibration validation test or if a
calibration routine was not provided. Similar to other modes, sensors in remodeling mode are considered untrusted
until they can be validated and placed back into monitoring mode. In remodeling mode, the functional form of the
sensor model is now assumed incorrect. This poses a challenge since a measurement function h[j] could be incorrectly
stated in an infinite number of ways. To solve this, we leverage user experience for each sensor application to create a
reasonable and finite set of S model options that are dynamically evaluated if the sensor in question enters remodeling
mode. Then, we use a statistical test to select the best model from the set. An example of this type of problem would
be a VINS user that initially only models radial lens distortion, but includes the option to also model tangential
lens distortion if the camera sensor ever enters the remodeling mode. Similarly, a laser range finder user may elect
to initially attempt a First Order Gauss-Markov (FOGM) error model, but include the option to try second-order,



constant bias, or the combination thereof, if the sensor ever enters remodeling mode. Any method that can evaluate
multiple models and statistically select the most appropriate one can be used in this mode. For our particular
implementation, we leveraged Multiple Model Adaptive Estimation (MMAE) research such as [32][33][34], but used
Akaike Information Criterion (AIC) [39] for the model selection decision since it balances model complexity with
error reduction. Additionally, we only evaluate multiple models when the sensor in question enters remodeling mode,
spawning S remodeling sub-filters initialized as copies of the main filter, and collecting residuals using (3) until all
remodeling termination criteria are met. Once a model selection decision is made, the sensor in question along with
the selected model are placed into validation mode. Similarly to calibration mode, sensors in remodeling mode are
untrusted and only able to affect estimates of ϵ[j] and p[j], which strengthens the model selection process since it is
heavily influenced by external and trusted sensors. To take advantage of remodeling functionality, an ARMAS user
needs to specify the following:

1. A list of candidate measurement models (i.e., h[j]
i i = 1, . . . , S).

2. The initial estimate for all sensor-unique states in each model (i.e., ϵ[j]i0
i = 1, . . . , S).

3. The initial covariance for all sensor-unique states in each model (i.e., Σ[j]
i0
, i = 1, . . . , S).

4. The remodeling termination criteria (e.g., number of samples, time period, covariance, etc.).

Subsequently, if the sensor in question enters remodeling mode, ARMAS automatically spawns S parallel filters
using the main filter statistics for the core states, x, and the provided initial estimates and covariances for each set
of sensor-specific states in each candidate model.

Implementation Summary

As shown in the previous sections, ARMAS provides an autonomous method for implementing various sensor model
management functions given a minimal set of additional specifications for each sensor beyond the usual modeling
requirements. It is important to note, certain functions including multi-sensor fault detection and identification
as well as RSR, are available without any additional sensor-centric specifications, and using only default settings.
Table 2 summarizes the additional information required to enable ARMAS functionality for each mode of operation.

Example Scenarios

This section describes two example scenarios that relied on the ARMAS framework for resilient sensor management.
It is important to note that these are simply two examples of how the proposed framework could be used. A user of
the framework has the flexibility to adopt the framework to the specific problem at hand. In both scenarios, the use
of ARMAS enabled continued operations in cases that would have resulted in either significant navigation solution
errors or irrecoverable sensor failures. Consider a two-dimensional navigation problem with two vehicles (Aircraft 1
and Aircraft 2) obtaining their navigation solutions from an EKF that uses a kinematic model given by

ẋ(t) =

 ẋp(t)
ẋv(t)
ẋa(t)

 =

 xv(t)
xa(t)

− 1
τa
xa(t)

+

 0
0

w(t)

 , (6)

where xp is the vehicle’s two-dimensional position in [m], xv is the two-dimensional velocity in [m/s], xa is the two-
dimensional acceleration in [m/s2], which is driven by a FOGM process with time constant τa = 90 [s], and w is a
two-dimensional white Gaussian noise process with E

[
wwT

]
= (1.5× 10−3)2 I

2×2
[m2/s6]. The initial state estimate,

x̂(0), and state error covariance, P(0), for both vehicles at the beginning of each scenario is given by

x̂(0) =
[
0 0 100 0 0 0

]T
, (7)

P(0) = diag
([

1 1 10 10 1.5× 10−3 1.5× 10−3
]2)

. (8)



Table 2: ARMAS implementation summary.

Parameter name Symbol Required by1
Example specificationM V C R

Significance level α X X 0.05
Monitoring period X 20 [s]
Validation period X 60 [s]
RSR period X 30 [s]
Core navigation states x X X X EKF States: 1, 2, 3, 4, 5, 6
Sensor-unique states ϵ[j] X X X EKF States: 7, 8
Calibration parameters2 p[j] X h =

[
p(1)x(1) p(2)x(2)

]T
Initial parameter values2 p

[j]
0 X p0 =

[
1 1

]T
Initial parameter uncertainty2 σ

[j]
0 X σ0 =

[
10 10

]T
Calibration sequence2 X Group 1: {p(1)}

Group 2: {p(2)}
Transition criteria2 X p(1): 300 [s]

p(2): 300 [s]
Candidate models3 h

[j]
i X h1 = [x(1) + b1 ,x(2)]

T

h2 = [x(1) + b1 ,x(2) + b2]
T

Initial state estimates3 ϵ
[j]
i0

X ϵ10 = 0

ϵ20 =
[
0 0

]T
Initial state covariances3 Σ

[j]
i0

X Σ10 = 100

Σ20 =

[
100 0
0 100

]
Termination criteria3 X 100 residual samples
1 M - Monitoring, V - Validation, C - Calibration, R - Remodeling
2 Example: 2D scale factor, each dimension estimated separately, time-based sequencing between dimensions
3 Example: Model 1 adds 1D bias, Model 2 adds 2D bias, both models use sample size for termination

Each vehicle obtains discrete measurement updates from three sensors (Sensor A, Sensor B, and Sensor C). Sensor A
is a two-dimensional position sensor with a model given by

z
[A]
k = s ◦ xpk

+ v
[A]
k , (9)

v
[A]
k ∼ N

(
0

2×1
, 1002 I

2×2

)
, (10)

where s is a two-dimensional scale factor, ◦ denotes the Hadamard product, and I is an identity matrix. Sensor B is
a two-dimensional, eight-satellite pseudorange sensor with a model given by

z
[B]
k =

 ∥t1 − xpk
∥

...
∥t8 − xpk

∥

+

 bk
...
bk

+ v
[B]
k , (11)

v
[B]
k ∼ N

(
0

8×1
, 202 I

8×8

)
, (12)

where ti is the two-dimensional position of satellite i, xpk
is the two-dimensional position of the vehicle at time tk,

and bk is a FOGM process simulating a receiver clock error with time constant τB = 3600 [s] and σ2 = 80002 [m2].
Finally, Sensor C is a two-dimensional velocity sensor with the model

z
[C]
k = xvk + v

[C]
k , (13)

v
[C]
k ∼ N

(
0

2×1
, 502 I

2×2

)
. (14)



Table 3: Key events and RSS position error comparison, Example 1.

Sensor Event Time RSS Position Error
[min] Aircraft 1 [m] Aircraft 2 [m] % Change

All Start 0 0 0 0
B Anomaly: On 5 2.2 2.2 0
B Anomaly: Off 15 369.6 10.9 -97.1

All End 20 4.8 4.8 0

Example 1: Temporary sensor anomaly

In this scenario, ARMAS was used to detect the presence of a temporary anomaly in Sensor B. Aircraft 1 was
equipped with a standard EKF while Aircraft 2 used ARMAS. ARMAS specifications for this scenario were as
follows:

• The significance level for monitoring and validation was set to 0.05.

• The monitoring period was defined by time elapsed and set to 20 [s].

• The validation period was defined by time elapsed and set to 60 [s].

• The RSR period was defined by time elapsed and set to 60 [s].

• The core navigation states were defined as all states shown in (6) (e.g., xp,xv,xa).

• Sensor B included a sensor-unique state, bk, as defined in (11).

• There were no calibration routines or remodeling options specified for any sensor.

At the start of the scenario, all sensors in Aircraft 2 were in monitoring mode. After five minutes, a temporary
anomaly defined by an unmodeled bias, which grew from 0 [m] to 1500 [m] over 10 minutes, was applied to the
fourth entry in z

[B]
k from (11). As shown in Figure 2, Aircraft 1 had no means to detect the growing Sensor B bias,

causing its solution to drift from the truth. In contrast, Aircraft 2 was equipped with ARMAS and therefore, was
able to quickly identify the mismatch between the solution versions across the three sensors, and identify Sensor B
as the cause of the divergence. Next, as shown in Figure 3, Sensor B failed the monitoring test, and was placed
into validation mode, where it also failed the validation test. Since no calibration routine or remodeling options
were provided, Sensor B transitioned from validation mode to a failed state, where RSR periodically validated its
performance. Aircraft 2 continued navigation using only Sensor A and Sensor C, as indicated by the increase in
position covariance in Figure 2. After some time, the two aircraft physically transitioned away from the anomaly
area, and the solution in Aircraft 1 quickly converged towards the truth. Meanwhile, Aircraft 2 continued to navigate
using only Sensor A and Sensor C until RSR led to a passing validation test. Once Sensor B was validated, Aircraft 2
returned to navigation with all sensors in monitoring mode. Table 3 compares the solution performance between the
two aircraft for this scenario. Note the large difference in Root Sum Squared (RSS) position error between the two
aircraft at the point the temporary anomaly ended, as shown in Table 3.

Example 2: Multiple sequential faults

In this scenario, ARMAS was used to validate and remodel an untrusted sensor model for Sensor B, as well as detect
the need to calibrate Sensor A. Again, Aircraft 1 was equipped with a standard EKF while Aircraft 2 used ARMAS.
ARMAS specifications for this scenario were as follows:

• The significance level for monitoring and validation was set to 0.05.

• The monitoring period was defined by time elapsed and set to 20 [s].

• The validation period was defined by time elapsed and set to 60 [s].

• The RSR period was defined by time elapsed and set to 60 [s].



Figure 2: Trajectory comparison between Aircraft 1 and Aircraft 2, Example 1.

• The core navigation states were defined as all states shown in (6) (e.g., xp,xv,xa).

• Sensor B included a sensor-unique state, bk, as defined in (11).

• Sensor A was equipped with a calibration routine defined by

p[A] =
[
s(1) s(2)

]T
, (15)

h[A] =
[
s(1)xp(1) s(2)xp(2)

]T
, (16)

p
[A]
0 =

[
1 1

]T
, (17)

σ
[A]
0 =

[
10 10

]T
, (18)

where the calibration sequence requires estimation of p(1) for 150 [s] first, then p(2) for an additional 150 [s].

• Sensor B was equipped with S = 8 remodeling candidates defined by

h
[B]
1 = h[B] +

[
c 0 0 0 0 0 0 0

]
, (19)

h
[B]
2 = h[B] +

[
0 c 0 0 0 0 0 0

]
, (20)

... (21)

h
[B]
8 = h[B] +

[
0 0 0 0 0 0 0 c

]
, (22)

where h[B] is the baseline measurement model defined in (11), and the constant bias, c, has initial statistics
given by

c0 ∼ N
(
0 [m], 10002 [m2]

)
. (23)



Figure 3: ARMAS mode history for Sensor B, Example 1.

At the start of the scenario, only Sensor A and Sensor C were online in both vehicles. Additionally, both online
sensors in Aircraft 2 were in monitoring mode. As shown in Figure 4, Sensor B was initialized after five minutes.
However, the sensor developers were not confident in the sensor model from (11), and provided ARMAS an additional
eight model versions, each modeling the addition of a constant bias to a particular satellite. Meanwhile, Aircraft 1 was
limited to using (11) as given. The actual measurements from Sensor B included a 1500 [m] constant bias added to the
fourth entry in z

[B]
k from (11). As shown in Figure 5, the sensor model provided for Sensor B was incomplete, causing

the solution in Aircraft 1 to shift away from the truth. Meanwhile, Aircraft 2 used the validation mode in ARMAS
to recognize the model mismatch without compromising its navigation solution. Since there were no calibration
routines provided for Sensor B, it transitioned into remodeling mode, where all model options were evaluated in
parallel, while continuing to navigate using the other two sensors. The model selection from the remodeling mode
was then successfully validated, placing Sensor B into monitoring mode. Five minutes later, an aircraft maneuver
changed the variable scale factor on Sensor A from s = [1 1]T to s = [1.2 1.3]T. As shown in Figure 4, the change
did not affect Aircraft 1 since the effect on the navigation solution from Sensor A was attenuated by the measurement
updates from the other two sensors. Conversely, ARMAS in Aircraft 2 detected the growing residuals and identified
Sensor A as the source. As shown in Figure 6, Sensor A transitioned from monitoring to calibration mode, where the
provided scale factor calibration sequence was augmented into the navigation state. The newly calibrated Sensor A
then passed the validation test and was placed back into monitoring mode. Finally, ten minutes later, Sensor B was
taken offline. At that point, with only Sensor A and Sensor C available to provide additional information, the solution
in Aircraft 1 began to exhibit the effects of the un-calibrated Sensor A. Meanwhile, Aircraft 2 continued to operate
nominally since it had previously detected the need for and successfully executed the calibration of Sensor A. Table 4
compares the solution performance between the two aircraft for this scenario. Note the diverging performance in
terms of RSS position error between the two aircraft, especially after the un-calibrated Sensor A becomes the only
source of position information in Aircraft 1.



Table 4: Key events and RSS position error comparison, Example 2.

Sensor Event Time RSS Position Error
[min] Aircraft 1 [m] Aircraft 2 [m] % Change

All Start 0 0 0 0
B Online 5 15.9 15.9 0
A Scale factor 10 370.3 5.8 -98.4
B Offline 20 438.9 2.5 -99.4

All End 25 2.78× 104 22.8 -99.9

Figure 4: Trajectory comparison between Aircraft 1 and Aircraft 2, Example 2.

CONCLUSIONS

This research has introduced a novel sensor management framework that provides sensor-agnostic autonomous and
resilient sensor management for alternative multi-sensor navigation problems. The proposed framework, named
Autonomous and Resilient Management of All-source Sensors (ARMAS), provides a breadth of sensor management
functions across four modes of operation: monitoring, calibration, remodeling, and validation. Using a coherent
interconnection between these modes, ARMAS was shown to provide resilient and autonomous sensor management
across two example multi-sensor navigation scenarios that required a combination of fault detection and identification,
online parameter calibration, multiple-model selection, and sensor model validation. In the two examples provided, a
vehicle equipped with the ARMAS framework exhibited up to 99.9% less position RSS error during temporary sensor
anomalies and multiple sequential sensor failures, when compared to a non-ARMAS equipped vehicle. Future work
in this area includes continued development of the novel methods for multi-sensor fault detection and sensor model
validation used in the monitoring and validation modes as well as multi-trial Monte Carlo performance analysis using
actual and simulated multi-sensor navigation data.



Figure 5: ARMAS mode history for Sensor B, Example 2.

Figure 6: ARMAS mode history for Sensor A, Example 2.
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