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ABSTRACT

The availability of an accurate inertial navigation solution depends largely on the proper calibration of the deterministic
errors usually found in inertial navigation systems, but more importantly, on the adequate stochastic modeling of the
random errors associated with each inertial sensor. As such, a considerable amount of time and energy has been
invested in the understanding and modeling of error sources found in a variety of inertial sensor types and their
applications. However, a comprehensive review of academic, vendor, and research literature on the subject matter
reveals that although the body of knowledge has large depth and breadth, the community lacks consistency across
specialty fields with regards to terminology, unit standardization, and modeling techniques.

This paper aims at providing the navigation community with a common framework for the modeling, simulation,
and characterization of errors associated with inertial sensor measurements. The goal is not to replace the various
inertial error model descriptions that exist, but to provide a common understanding of how these all relate together.
After presenting the range of error models and terms found in literature, the subtle differences in terminology and
categorization are compared, correlated, and consolidated into a common model. Next, the Allan Variance method is
used to carefully and progressively illustrate how each error component in the common model arises and is identified.

The effectiveness of the common model is demonstrated by analyzing stationary data from a real-world inertial
measurement unit, comparing the identified error parameters to the vendor specifications, and using the same pa-
rameters to produce a simulated signal that closely matches the original. Armed with this common framework, the
navigation community will be able to more effectively communicate and exchange ideas on the subject matter, thereby
accelerating the progression towards cheaper, more reliable navigation technology with properly modeled inertial
sensors at its core.



INTRODUCTION

The availability of an accurate inertial navigation solution depends largely on the proper calibration of the deterministic errors
usually found in inertial navigation systems, but more importantly, on the adequate stochastic modeling of the random errors
associated with each inertial sensor.

Adequate modeling of inertial sensor errors begins with an understanding of the physical processes from which deterministic
and stochastic errors arise. In general, any given sensor output signal can be written in the form

y(t) = Mx(t)+ ε(t) (1)

where y(t) is the measured output signal, x(t) is the true signal, M is a linear operator on x(t) and ε(t) is an additive non-linear
signal composed of a combination of stochastic and deterministic errors, which vary with sensor type. For inertial sensors, the
majority of existing literature adapts a version of (1) to both accelerometers and gyroscopes by providing specific forms of M
and further refining the deterministic components and stochastic processes governing ε(t).

GENERALIZED ERROR MODEL

In [1] general error models for gyroscopes and accelerometers are provided to describe a wide array of deterministic and
stochastic errors. For gyroscopes, [1] describes the relation between true (ωx) and measured (ω̃x) angular rate for a single axis
x as

ω̃x = (1+Sx)ωx +Myωy +Mzωz +B f x +Bgxax +Bgzaz +Baxzaxaz +ηx (2)

where Sx is the x-axis scale factor, My and Mz are cross coupling coefficients, B f x is a constant x-axis bias (non g-sensitive),
Bgx and Bgz are g-sensitive bias coefficients along the input and spin axes, Baxz is the anisoelastic bias coefficient, and ηx is
zero-mean additive white Gaussian noise. The expanded form in (2) can be applied to the remaining two axes and expressed in
terms of (1) by letting

y =

 ω̃x
ω̃y
ω̃z

 x =

 ωx
ωy
ωz


M =

 1+Sx My Mz
Mx 1+Sy Mz
Mx My 1+Sz


ε =

 B f x +Bgxax +Bgzaz +Bgxzaxz +ηx
B f y +Bgyay +Bgxax +Bgyxayx +ηy
B f z +Bgzaz +Bgyay +Bgzyazy +ηz


Similarly, [1] also describes a general error model for accelerometers in terms of the relation between true (ax) and measured

(ãx) acceleration for a single axis x as

ãx = (1+Sx)ax +Myay +Mzaz +B f +Bvaxay +ηx (3)

where Sx is the x-axis scale factor, My and Mz are cross coupling coefficients, B f is a constant measurement bias, Bv is the
vibro-pendulus error coefficient, and ηx is zero-mean additive white Gaussian noise. Again, (3) can be expressed using the
form in (1) by letting

y =

 ãx
ãy
ãz

 x =

 ax
ay
az


M =

 1+Sx My Mz
Mx 1+Sy Mz
Mx My 1+Sz


ε =

 B f +Bvaxay +ηx
B f +Bvayaz +ηy
B f +Bvazay +ηz





Table 1: Allan Variance Noise Parameter Identification Summary

Error Source Symbol Relation to Tangent Line Units∗Allan Deviation Slope τ at desired σ

Quantization σq
σ(τ) = σq

√
3τ−1

σq = τσ(τ)√
3

−1
√

3 [deg] or [m/s]

Random Walk σrw
σ(τ) = σrwτ−1/2

σrw = τ1/2σ(τ)
−1/2 1 [deg/

√
hr] or [m/s/

√
hr]

Bias Instability σb

σ(τ) = σb

√
2ln2

π
τ0

σb = σ(τ)√
2ln2

π

0 N/A [deg/hr] or [m/s/hr]

Rate Random Walk σrrw
σ(τ) = σrrw

τ1/2
√

3
σrrw = σ(τ)

√
3τ−1/2

1/2 3 [deg/hr/
√

hr] or [m/s/hr/
√

hr]

Rate Ramp σrr
σ(τ) = σrr

τ1
√

2
σrr = σ(τ)

√
2τ−1

1
√

2 [deg/hr/hr] or [m/s/hr/hr]

*Units result from σ(τ) measured in [deg/hr] or [m/s/hr] and τ measured in [hrs]

Further literature review reveals small differences in name and convention given to the general set of parameters found
in gyroscope and accelerometer models. Additionally, the technology used in sensor development (i.e. mechanical, ring
laser, MEMS, etc...) affects the combination of parameters found in particular models. In general, however, all models can
be expressed as an adaptation of (1), with M composed of generally deterministic terms and ε composed of a combination
of deterministic and stochastic terms. This general distinction between M and ε found in most literature then allows the
discussion to focus not on the number or combination of terms found in a particular model, but on the subtle differences in
naming convention and modeling technique for the stochastic terms found in ε .

Focusing on stochastic terms, [2] uses a form similar to (1) and describes three types of stochastic gyroscopic errors in
ε as:“constant bias, uncorrelated white noise, and 1/ f (flicker) noise.” Similar terms appear in [3] and [4] as general noise
parameters that can be identified using the Allan variance method ([5],[6]), which will be discussed in later sections. Addition-
ally, terms such as “quantization noise”, “angle/velocity random walk”, “bias instability”, “bias stability”, “rate random walk”
and “rate ramp” appear throughout literature as members of a general group of noise parameters that can be found in various
types of inertial sensors. It is important to note that most of these terms are actually variations of an attempt to characterize the
stochastic component of ε . That is, out of the eclectic characterization of inertial error terms discussed so far, the majority of
the variation in terminology and modeling lies not within M but actually within ε . This is somewhat logical since, as previously
discussed, M is a linear operator that is mostly consistent across the varying sensor technologies, leaving ε as a stochastic
modeling challenge due to differing interpretations across application communities.

As such, the focus of this research now shifts to providing a common framework for the most commonly found terms in
ε as well as demonstrating through practical application (via provided code and algorithms in [7]) the identification, modeling
and simulation of such noise parameters using real and simulated data.

IDENTIFYING NOISE PARAMETERS

Focusing on identifying the components of ε in a given inertial sensor signal, we begin by reviewing the Allan variance method
and how it can be used to characterize stochastic process coefficients for a variety of error sources. Table 1 summarizes the key
identification parameters while the published code in [7] provides a sample applied algorithm for MATLAB.

Allan Variance Method

As previously alluded to, although the Allan Variance method was originally developed for analyzing clock performance [8],
it has also been proven to be a valuable noise identification tool for inertial sensors ([5],[4],[3],[6]). In general, this method
computes a variance, σ2(τ), and indirectly a deviation, σ(τ), for a given input rate signal, ẏ(t), a function of averaging time



(τ) using

Ω̄k(τ) =
1
τ

∫ tk+τ

tk
ẏ(t)dt [deg/s] or [m/s/s] (4)

σ
2(τ) =

1
2(N−2n)

N−2n

∑
k=1

[Ω̄tk+τ(τ)− Ω̄k(τ)]
2 [deg2/s2] or [m2/s2/s2] (5)

where ẏ(t) is either an angular rate [deg/s] for gyroscopes or a specific force [m/s/s] for accelerometers. We note here one of
the first major sources of variation in literature: measurement units. For the purposes of standardization and compatibility with
most manufacturer specifications for inertial sensors, the units used throughout this research will not only be clearly laid out
for each noise component but also summarized in Table 1. Additionally, it is important to note the basic measurement unit for
gyroscopes is established as [deg] while the same unit for accelerometers is established as [m/s]. When referring to each type
of sensor’s output rate, we simply divide by [s] to produce [deg/s] or [m/s/s], respectively. In the case where an inertial sensor
provides measurements in increments (∆θ [deg] or ∆V [m/s]), the corresponding rate signal needed for the Allan variance
method can be computed using

ẏ u
∆y
∆t

[deg/s]

where ∆t is the corresponding sampling period of the inertial sensor. The method by which the Allan variance method produces
σ(τ) allows for practical identification of the various components of ε found in an output signal y by analyzing the logarithmic
relationship between σ(τ) and τ . The following sections then focus on the identification of the most commonly found stochastic
terms in literature, all of which compose ε in our generalized error model.

Quantization Noise

Quantization noise is the error that arises from the sampling of a continuous signal at discrete steps of size ∆ [3]. Quantization
noise is uniformly distributed between −∆/2 and ∆/2, which gives

µq = 0 (6)

σ
2
q =

∆2

12
(7)

σq =
∆√
12

(8)

Analyzing the relationship between the power spectral density function and the Allan deviation of a signal composed only
of quantization noise [4] gives

σ(τ) =
σq
√

3
τ

= σq
√

3τ
−1 [deg/s] or [m/s/s] (9)

σq =
τσ(τ)√

3
[deg] or [m/s] (10)

log(σ(τ)) = log(σq
√

3τ
−1) (11)

=− log(τ)+ log(σq)+ log(
√

3) (12)

which tells us we can identify σq in an Allan deviation curve by finding a −1 slope when plotting log(σ(τ)) against log(τ).
Next, letting τ =

√
3 in (12) solves the equation for σq, which means if the −1 slope line is projected to τ =

√
3, the value of

σ(τ) at that point will equal σq. This process is illustrated in Figure 3. Finally, (10) tells us the units of σq are in [deg] or [m/s]
since σ(τ) is assumed to be in [deg/s] or [m/s/s] and τ is in [s]. As summarized in Table 1, the quantization noise coefficient
can be identified in an Allan deviation curve by finding a−1 slope when plotting log(σ(τ)) against log(τ) and projecting a line
with that slope out to τ =

√
3. The resulting value of σ(τ) as that point will then describe σq in [deg] or [m/s].



Angle/Velocity Random Walk

As made clear by the name, angle or velocity random walk is a random walk observed in the angle [deg] or velocity [m/s]
signal output of an inertial sensor. In terms of (2) or (3), angle/velocity random walk arises from integrating ηx in ω̃x or ãx. The
relationship between the Allan deviation and the power spectral density for a signal of this type is given by

σ(τ) =
σrw√

τ
= σrwτ

−1/2 [deg/s] or [m/s/s] (13)

σrw = τ
1/2

σ(τ) [deg/
√

s] or [m/s/
√

s] (14)

log(σ(τ)) = log(σrwτ
−1/2) (15)

=−1
2

log(τ)+ log(σrw) (16)

which tells us we can identify σrw in an Allan deviation curve by finding a −1/2 slope when plotting log(σ(τ)) against log(τ).
Letting τ = 1 in (16) solves the equation for σrw, which means if the −1/2 slope line is projected to τ = 1, the value of σ(τ)
at that point will equal σrw. Equation (14) tells us the units of σrw are in [deg/

√
s] or [m/s/

√
s]. Since in this case the time units

were not cancelled out in (14), it becomes important to note that if σrw is desired in units more compatible with manufacturer
specifications (such as [deg/

√
hr] or [m/s/

√
hr]), we can either pre-multiply σ(τ) by 3600 [s/hr] and τ by 1/3600 [hr/s] prior to

analyzing the log-log slope, or simply project the line out to τ = 3600 [s] instead of τ = 1 [s].

Bias Instability

Bias instability, sometimes referred to ironically as bias stability, refers to the tendency of an inertial sensor’s constant bias
(B f in (2) or (3)) to change or drift during use. The most accurate description of the stochastic process behind this drift is
flicker (or 1/ f ) noise as shown by [2] and defined in (30). However, due to complications in the modeling of flicker noise
in common navigation estimation algorithms (such as a a Kalman filter), this process is often approximated by a first-order
Gauss-Markov (FOGM) process. As such, the relation between flicker noise and Allan deviation will be studied for noise
identification purposes while the relation between FOGM and Allan deviation will be studied for noise simulation purposes.
The relationship between the Allan deviation and the power spectral density for a flicker noise signal is given by

σ(τ) = σb

√
2ln2

π
= σb

√
2ln2

π
τ

0 [deg/s] or [m/s/s] (17)

σb =
σ(τ)√

2ln2
π

[deg/s] or [m/s/s] (18)

log(σ(τ)) = 0log(τ)+ log(σb)+ log

(√
2ln2

π

)
(19)

which tells us there is no linear relation to τ in (19). That is, we can identify the flicker noise coefficient in an Allan deviation
curve by finding a 0 slope when plotting log(σ(τ)) against log(τ). Additionally, (18) tells us the value of σ(τ) at that point can

be divided by
√

2ln2
π

to solve for σb, which will be in [deg/s] or [m/s/s]. As previously discussed, if σb is desired in units more
compatible with manufacturer specifications (such as [deg/hr] or [m/s/hr]), we can pre-multiply σ(τ) by 3600 [s/hr] and τ by
1/3600 [hr/s] prior to analyzing the log-log slope.

Next, for noise simulation purposes, it is also important to discuss the relationship between the Allan deviation curve and
the power spectral density of a FOGM process. This relation is also found in [3] and given by

σ(τ) =

√
(qcTc)2

τ

[
1− Tc

2τ

(
3−4e−

τ
Tc + e−

2τ
Tc

)]
(20)

where Tc is the correlation time and qc is the noise amplitude. As shown in [3] and [4], (20) can be shown to approach a 0
log-log slope when

τ = 1.89Tc (21)

σ(τ) = 0.437qc
√

Tc (22)

That is, if Tc and qc are correctly chosen, one can approximate the 0 slope Allan deviation curve of flicker noise at the same
τ found in the original flicker noise signal. This process will be discussed in more detail in the following sections.



Rate Random Walk

In contrast to angle/velocity random walk, rate random walk refers to a random walk process observed in the inertial sensor’s
rate signal ([deg/s] or [m/s/s]). In terms of (2) or (3), rate random walk arises from integrating white noise found in ˙̃ωx or ˙̃ax.
The relationship between the Allan deviation and the power spectral density for a signal of this type is given by

σ(τ) = σrrw

√
τ

3
= σrrw

τ1/2
√

3
[deg/s] or [m/s/s] (23)

σrrw = σ(τ)
√

3τ
−1/2 [deg/s/

√
s] or [m/s/s/

√
s] (24)

log(σ(τ)) =
1
2

log(τ)+ log(σrrw)−
1
2

log(3) (25)

which tells us we can identify σrrw in an Allan deviation curve by finding a +1/2 slope when plotting log(σ(τ)) against log(τ).
Letting τ = 3 in (25) solves the equation for σrrw, which means if the +1/2 slope line is projected to τ = 3, the value of σ(τ)
at that point will equal σrrw. Equation (24) tells us the units of σrrw are in [deg/s/

√
s] or [m/s/s/

√
s]. If σrrw is desired in units

more compatible with manufacturer specifications (such as [deg/hr/
√

hr] or [m/s/hr/
√

hr]), we can either pre-multiply σ(τ) by
3600 [s/hr] and τ by 1/3600 [hr/s] prior to analyzing the log-log slope, or simply project the line out to τ = 10,800 [s] instead
of τ = 3 [s].

Rate Ramp

Finally, rate ramp refers to the deterministic, linear and usually long-term increase of the inertial sensor’s rate signal output
([deg/s] or [m/s/s]). In terms of (2) or (3), rate random walk arises when B f x or B f linearly changes over time with a deterministic
slope. The relationship between the Allan deviation and the power spectral density for a signal of this type is given by

σ(τ) = σrr
τ1
√

2
[deg/s] or [m/s/s] (26)

σrr = σ(τ)
√

2τ
−1 [deg/s/s] or [m/s/s/s] (27)

log(σ(τ)) = log(τ)+ log(σrr)− log(
√

2) (28)

which tells us we can identify σrr in an Allan deviation curve by finding a +1 slope when plotting log(σ(τ)) against log(τ).
Letting τ =

√
2 in (28) solves the equation for σrr, which means if the +1 slope line is projected to τ =

√
2, the value of σ(τ)

at that point will equal σrr. Equation (27) tells us the units of σrr are in [deg/s/s] or [m/s/s/s]. If σrr is desired in units more
compatible with manufacturer specifications (such as [deg/hr/hr] or [m/s/hr/hr]), we can either pre-multiply σ(τ) by 3600 [s/hr]
and τ by 1/3600 [hr/s] prior to analyzing the log-log slope, or simply project the line out to τ = 5.0912×103 [s] instead of
τ =
√

2 [s].

SIMULATING ERROR PROCESSES

Having examined the stochastic processes driving ε in our generalized error model, we can now use the information at hand to
simulate such processes. As shown in the following sections, unit conversion and accountability will play a key role in properly
simulating these processes. To facilitate the simulation of these processes, all simulated signals will be generated in the rate
domain ([deg/s] or [m/s/s]) since such a signal can be directly analyzed for Allan deviation using (4) and (5). Additionally,
all input coefficients with time dependencies will be assumed to be in typical manufacturer specifications ([hrs] instead of [s]).
The published code in [7] contains a sample applied algorithm for simulating each type of noise signal discussed below.



Quantization Noise

Given a desired σq [deg] or [m/s], a simulated quantization noise signal can be generated by producing a uniform distribution
of the form

∆ = σq
√

12

y(tk)
∈RN+1

∼U (−∆

2
,

∆

2
) k = 1, . . . ,N +1 [deg] or [m/s]

ẏ(tk)
∈RN

=
y(tk+1)− y(tk)

∆t
[deg/s] or [m/s/s]

where N is the number of samples in the rate signal and ∆t is the sampling period [s].

Angle/Velocity Random Walk

Recall an angle/velocity random walk is produced when white Gaussian noise found in a rate signal is integrated to produce
angle or velocity. However, the signal of interest we are seeking to generate is a rate signal. As such, given a desired σrw
[deg/

√
hr] or [m/s/

√
hr], a simulated angle/velocity random walk signal can be generated by producing a Normal distribution

of the form

σ
′
rw =

σrw

60
1√
∆t

[deg/s] or [m/s/s]

ẏ(tk)
∈RN
∼N (0,σ

′2
rw) k = 1, . . . ,N [deg/s] or [m/s/s]

where N is the number of samples in the rate signal and ∆t is the sampling period [s].

Bias Instability

As previously discussed, there are two methods available for simulating the stochastic process that drives bias instability. The
most accurate description of this process is flicker noise, also referred to as 1/ f noise or “pink noise.” For the purposes for
generating simulated data, it is preferable to use a pink noise generator such as the one shown in the published code in [7].
However, when modeling bias instability in a navigation algorithm such as a Kalman filter, the FOGM approximation to this
process is more widely used. Here, the two methods are explained for completeness. First, given a desired σb [deg/hr] or
[m/s/hr], the corresponding σ ′b in [deg/s] or [m/s/s] is found using

σ
′
b =

σb

3600
[deg/s] or [m/s/s]

Next, for a direct flicker noise simulation, an autoregressive pink noise generator such as MATLAB’s dsp.ColoredNoise
function can be used to produce ẏ(t) as outlined in [9] using

w(tk) = 1+
63

∑
k=1

akẏ′(tn− tk) (29)

ak = (k− 1
2
)

ak−1

k
k = 1, . . . ,63 (30)

ẏ(tk)
∈RN

= σ
′
bẏ′(tk) [deg/s] or [m/s/s] (31)

where w(tk)∼ N(0,1) is white Gaussian noise.
Since modeling flicker noise directly proves to be computationally cumbersome as shown in [2], the most widely used



approximation to flicker noise in bias instability modeling is a FOGM. This type of process can be generated using

Tc =
τ0

1.89
[s]

Qd = σ
′2
b (1− e−

2∆t
Tc ) [deg2/s2] or [m2/s2/s2]

Φ = e−
∆t
Tc

ẏ(t0) =
√

Qdw(t0)

ẏ(tk+1) = Φẏ(tk)+
√

Qdw(tk) k = 1, . . . ,N−1 [deg/s] or [m/s/s]

where τ0 is the location of the zero-slope region in the Allan deviation plot, w(tk) ∼ N(0,1) is white Gaussian noise, ∆t is the
sampling period, and N is the number of samples in the rate signal. Here is is important to note the value of τ0 (and hence the
value of Tc) can be found by analyzing the Allan deviation plot of a particular inertial sensor’s rate output. This value can then
be used to generate a FOGM for simulation or used directly in the Φ matrix of a Kalman filter along with Qd .

Rate Random Walk

Recall a rate random walk is produced when white Gaussian noise found in the acceleration signal (in [deg/s2] or [m/s/s2]) is
integrated to produce a rate signal. As such, given a desired σrrw [deg/hr/

√
hr] or [m/s/hr/

√
hr], a simulated rate random walk

signal can be generated by producing a Normal distribution of the form

σ
′
rrw =

σrrw

3600×60

√
∆t

∆t
[deg/s2] or [m/s/s2]

ÿ(tk)
∈RN
∼N (0,σ

′2
rrw) k = 1, . . . ,N [deg/s2] or [m/s/s2]

ẏ(tk)
∈RN

=
k

∑
n=1

ÿ(tn)∆t [deg/s] or [m/s/s]

where N is the number of samples in the rate signal and ∆t is the sampling period [s].

Rate Ramp

Recall a rate ramp is observed when the inertial sensor’s rate signal (in [deg/s] or [m/s/s]) changes linearly with time. In other
words, the output signal (in [deg] or [m/s]) is accelerating. As such, given a desired σrr [deg/hr/hr] or [m/s/hr/hr], a simulated
rate ramp signal can be generated by integrating a constant acceleration term that is equal to the slope of the desired rate ramp
to produce the ramping rate signal using

ÿ(tk)
∈RN

= σ
′
rr =

σrrw

3600×3600
[deg/s/s] or [m/s/s/s]

ẏ(tk)
∈RN

=
k

∑
n=1

ÿ(tn)∆t [deg/s] or [m/s/s]

where N is the number of samples in the rate signal and ∆t is the sampling period [s].

EXPERIMENTAL RESULTS

The concepts explored in the previous sections where put to practice via two methods:

1. Given desired σq,σrw,σb,σrrw,σrr coefficients, generate a simulated rate signal, then analyze via Allan deviation to
compare input and output values.

2. Given experimental stationary rate data for an inertial sensor, use Allan deviation to extract noise coefficients, generate
simulated data with the coefficients found and compare the resulting Allan deviation curve with the original as well as
specifications.



Table 2: Allan Variance Noise Parameter Identification Summary

Error Source Symbol True Identified Parameter
Parameter Flicker FOGM

Quantization σq 2.00×10−4 2.00×10−4 2.00×10−4

Random Walk σrw 0.80×10−2 0.99×10−2 1.04×10−2

Bias Instability σb 1.00×10−1 1.62×10−1 1.89×10−1

Rate Random Walk σrrw 1.00×100 1.49×100 1.63×100

Rate Ramp σrr 5.00×100 4.70×100 5.22×100

*FOGM simulated using Tc = 22.7 [s],Φ = 1.0,Qd = 2.72×10−13[deg2/s2]

Table 3: Sensonor STIM-300 Results

Error Source Symbol Specification Identified
Parameter Parameter

Accelerometer
Velocity Random Walk σrw 0.06 0.05

Bias Instability σb 2.66∗ 2.99
Gyroscope

Angular Random Walk σrw 0.15 0.15
Bias Instability σb 0.50 0.67

∗ converted from [mg] to [m/s/hr]

The methods listed in (1) and (2) are demonstrated in the published code in [7]. The results are shown in Figures 1 through 6.
Method (1) was completed by selecting the noise coefficients shown in Table 2 and comparing the input and output values

computed via the Allan deviation method. Figure 1 and Figure 4 illustrate direct flicker noise simulation and FOGM approx-
imation for σb respectively. Figure 2 illustrates the underlying slope detection algorithm for Allan deviation as performed in
[7].

Method (2) was completed by collecting 6.057 [hrs] of ∆θ and ∆V data at ∆t = 0.004 [s] sampling period from a Sensonor
STIM-300 inertial measurement unit. The data was analyzed via the Allan deviation method and the computed noise coefficients
were then used to generate simulated data, which was compared to the original data via the Allan deviation method as shown
in Figures 5 and 6. Table 3 summarizes the identified noise parameter coefficients and compares their values to those found in
the manufacturer specifications [10].

CONCLUSIONS

In summary, this research has demonstrated the use of a generalized inertial sensor error model by consolidating terminology
found throughout literature and applying the theoretical concepts to practical algorithms. This paper aimed at providing readers
with a centralized source of theory and application for inertial sensor error modeling and simulation by fusing the eclectic
source of information available on the subject matter and providing detailed information on the steps necessary to identify and
reproduce specific noise coefficients in an inertial sensor rate signal.

DISCLAIMER

The views expressed in this paper are those of the authors, and do not reflect the official policy or position of the United States
Air Force, Department of Defense, or U.S. Government.



Figure 1: Noise Simulation and Allan Deviation Validation Results



Figure 2: Automated Log-Log Slope Identification Demonstration



Figure 3: Illustration of Solving for σq



Figure 4: Results of Using FOGM Process to Approximate Flicker Noise



Figure 5: Analysis and Regeneration Results for Sensonor STIM-300 Accel Data



Figure 6: Analysis and Regeneration Results for Sensonor STIM-300 Gyro Data



REFERENCES

[1] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, Second Edition, vol. 207. AIAA, 2005.

[2] M. Kirkko-Jaakkola, J. Collin, and J. Takala, “Bias prediction for MEMS gyroscopes,” IEEE Sensors Journal, vol. 12,
pp. 2157–2163, June 2012.

[3] IEEE, “IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros,”
IEEE Std 952-1997, 1998.

[4] H. Hou, “Modeling inertial sensor errors using allan variance,” Master’s thesis, University of Calgary, September 2004.

[5] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Transactions
on instrumentation and measurement, vol. 57, no. 1, pp. 140–149, 2008.

[6] Freescale Semiconductor, Inc., “Allan Variance: Noise Analysis for Gyroscopes.” http://cache.freescale.com/

files/sensors/doc/app_note/AN5087.pdf, 2015.

[7] J. Jurado, “Tools for inertial allan variance analysis and simulation.” https://www.mathworks.com/matlabcentral/
fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation, February 2017.

[8] D. W. Allan, “Statistics of atomic frequency standards,” Proceedings of the IEEE, vol. 54, pp. 221–230, Feb 1966.

[9] N. J. Kasdin, “Discrete simulation of colored noise and stochastic processes and 1/falpha;power law noise generation,”
Proceedings of the IEEE, vol. 83, pp. 802–827, May 1995.

[10] Sensonor AS, “STIM 300 Inertial Measurement Unit Datasheet.” http://www.sensonor.com/media/91313/ts1524.
r8%20datasheet%20stim300.pdf, April 2013.

http://cache.freescale.com/files/sensors/doc/app_note/AN5087.pdf
http://cache.freescale.com/files/sensors/doc/app_note/AN5087.pdf
https://www.mathworks.com/matlabcentral/fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation
https://www.mathworks.com/matlabcentral/fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation
http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf
http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf

	Biographies
	Jan Jurado
	John Raquet

	Abstract
	Introduction
	Generalized Error Model
	Identifying Noise Parameters
	Allan Variance Method
	Quantization Noise
	Angle/Velocity Random Walk
	Bias Instability
	Rate Random Walk
	Rate Ramp

	Simulating Error Processes
	Quantization Noise
	Angle/Velocity Random Walk
	Bias Instability
	Rate Random Walk
	Rate Ramp

	Experimental Results
	Conclusions
	Disclaimer

